Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2+xy-6y^2+x+13y=17$
$\Leftrightarrow x^2+x(y+1)-(6y^2-13y+17)=0$
Coi đây là pt bậc 2 ẩn $x$ thì để pt có nghiệm nguyên thì:
$\Delta = (y+1)^2+4(6y^2-13y+17)$ là scp
$\Leftrightarrow 25y^2-50y+69$ là scp
Đặt $25y^2-50y+69=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow (5y-5)^2+44=t^2$
$\Leftrightarrow 44=(t-5y+5)(t+5y-5)$
Đến đây là dạng pt tích đơn giản rồi. Bạn có thể tự giải.
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
\(2x^2+2y^2+3x-6y=5xy-7\)
\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)
\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)
\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)
vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)
Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7
Tới đây bạn tự làm nhé
mình không biết là đúng không nhưng mình làm vậy này
Biến đổi vế phải ta có :
VP=y^4-6y^3+11y^2-6y=(y-1)(y-2)(y-3)=(x-2019)^2
=> y-1 ,y-2, y-3 là 3 số nguyên liên tiếp
mà tích của 3 số nguyên liên tiếp không thể là số chính phương
=>{x-2019=0
{y-1=0 hoặc y-2=0 hoặc y-3 =0
vậy ta có các cặp x,y là (2019:1) hoặc (2019:2)hoặc (2019;3)
pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0
<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0
<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12
<=> (3x+2y+2)^2 - (y+1)^2 = -12
<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12
<=> (3x+3y+3).(3x+y+1) = -12
<=> (x+y+1).(3x+y+1) = -4
Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !
Tk mk nha
\(\Leftrightarrow x^2-4x+4-y^2=7\)
\(\Leftrightarrow\left(x-2\right)^2-y^2=7\)
\(\Leftrightarrow\left(x-y-2\right)\left(x+y-2\right)=7\)
Phương trình ước số cơ bản, chắc ko cần "chi tiết" hơn nữa đâu
ủa ko có nghiệm ?
mình chép đề bài đúng rồi nha bạn , mình cũng đang nghi là vô nghiệm đây nhưng vẫn đăng hỏi thử