K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

x2-xy+y+2=0

\(\Leftrightarrow\) x2-1-xy+y=-3

\(\Leftrightarrow\) (x-1)(x+1)-y(x-1)=-3\(\Leftrightarrow\) (x-1)(x-y+1)=-3

x,y \(\in z\) \(\Rightarrow\) x-1;x-y+1\(\in z\)

=>x-1;x-y+1\(\in U\left(-3\right)=\left\{3;-3;1;-1\right\}\)

\(\Rightarrow\) x,y\(\in\left\{4,6;-2,-2;2,6;0,-2\right\}\)

NV
23 tháng 1

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=5\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=5\)

\(\Leftrightarrow\left(x-2y\right)^2=5-\left(y-3\right)^2\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow5-\left(y-3\right)^2\ge0\Rightarrow\left(y-3\right)^2\le5\)

\(\Rightarrow\left[{}\begin{matrix}\left(y-3\right)^2=0\\\left(y-3\right)^2=1\\\left(y-3\right)^2=4\end{matrix}\right.\)

Thay vào (1):

- Với \(\left(y-3\right)^2=0\)  \(\Rightarrow\left(x-2y\right)^2=5\) vô nghiệm do 5 ko phải SCP

- Với \(\left(y-3\right)^2=1\Rightarrow\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\)

\(y=4\Rightarrow\left(x-8\right)^2=4\Rightarrow\left[{}\begin{matrix}x=10\\x=6\end{matrix}\right.\)

\(y=2\Rightarrow\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

- Với \(\left(y-3\right)^2=4\Rightarrow\left[{}\begin{matrix}y=5\\y=1\end{matrix}\right.\)

\(y=5\Rightarrow\left(x-10\right)^2=1\Rightarrow\left[{}\begin{matrix}x=11\\x=9\end{matrix}\right.\)

\(y=1\Rightarrow\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Em tự kết luận các cặp nghiệm

NV
23 tháng 1

Chắc phải là cặp số nguyên chứ có vô số cặp x;y bất kì thỏa mãn pt này

15 tháng 3 2016

Bài  \(1.\)

\(x^4+2010x^2+2009x+2010=\left(x^4-x\right)+\left(2010x^2+2010x+2010\right)\)

                                                              \(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)

                                                              \(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)

                                                              \(=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)

15 tháng 3 2016

Bài  \(2.\) 

\(x^2-25=y\left(y+6\right)\)

\(\Leftrightarrow\)  \(x^2-25+9=y^2+6y+9\)

\(\Leftrightarrow\)  \(x^2-16=\left(y+3\right)^2\)

\(\Leftrightarrow\)  \(x^2-\left(y+3\right)^2=16\)

\(\Leftrightarrow\)  \(\left(x-y-3\right)\left(x+y+3\right)=16\)

Bạn xét từng trường hợp nhóe!

28 tháng 9 2016

\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

Suy ra : \(A^2\le2\Rightarrow A\le\sqrt{2}\)

Vậy Max A = \(\sqrt{2}\) khi \(\hept{\begin{cases}x=y\\x=z\\x+y+z=\sqrt{2}\end{cases}\Leftrightarrow}x=y=z=\frac{\sqrt{2}}{3}\)

28 tháng 9 2016

tuyệt