Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-2}{8}=\frac{5y+6}{3}=\frac{3x-5y-8}{8-3}=\frac{3x-5y-8}{5}\)
\(+,3x=5y+8\Rightarrow\frac{5y+6}{8}=\frac{5y+6}{3}\Rightarrow y=-\frac{6}{5}\Rightarrow x=\frac{2}{3}\)
\(+,3x\ne5y+8\Rightarrow5=10x\Leftrightarrow x=\frac{1}{2}\Rightarrow\frac{-1}{16}=\frac{5y+6}{3}\Rightarrow....\)
a) 2xy - 3x + 5y = 4
=> 2(2xy - 3x + 5y) = 8
=> 4xy + 6x + 10y = 8
=> 2x(2y + 3) + 5(2y + 3) = 23
=> (2x + 5)(2y + 3) = 23
=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}
Lập bảng:
2x + 5 | 1 | -1 | 23 | -23 |
2y + 3 | 23 | -23 | 1 | -1 |
x | -2 | -3 | 9 | -14 |
y | 10 | -13 | -1 | -2 |
Vậy ...
b) 5x2 +5y2 +8xy + 2x-2y+2 = 0
(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0
(x+1)2 + (y-1)2 +(2x+2y)2 = 0
=> (x+1)2 = 0 => x = -1
(y-1)2 = 0 => y = 1
(2x+2y)2 = 0
KL: x = -1; y = 1
a) 3x2 +5y2 = 345
=> x2 chia hết cho 5
=> x chia hết cho 5
đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3
đặt y = 3z => 15t2+9z2 =69
⇒5t2 +3z2 =23
...
Lời giải:
$5y-3x=2xy-11$
$\Leftrightarrow 10y-6x=4xy-22$
$\Leftrightarrow (10y-4xy)-6x+22=0$
$\Leftrightarrow 2y(5-2x)+3(5-2x)+7=0$
$\Leftrightarrow (2y+3)(5-2x)=-7$
Do $x,y$ nguyên nên có các TH sau:
$2y+3=1; 5-2x=-7\Rightarrow (x,y)=(6; -1)$
$2y+3=-1; 5-2x=7\Rightarrow (x,y)=(-1; -2)$
$2y+3=7; 5-2x=-1\Rightarrow (x,y)=(3; 2)$
$2y+3=-7; 5-2x=1\Rightarrow (x,y)=(2,-5)$
Vậy có 4 cặp số thỏa mãn.
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)