Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các cặp số tự nhiên (x;y) thoả mãn (2x + 1)(y - 3) = 10 thì cặp số cho tích xy lớn nhất là gì?
Vì 10 = 2 * 5 = 1 * 10 nên có các trường hợp sau
- Trường hợp 1: 2x + 1 = 10, y - 3 = 1 (loại, vì 2x + 1 lẻ)
- Trường hợp 2: 2x + 1 = 1, y - 3 = 10 => x = 0, y = 13
- Trường hợp 3: 2x + 1 = 2, y - 3 = 5 (loại)
- Trường hợp 4: 2x + 1 = 5, y - 3 = 2 => x = 2, y = 5
Vậy cặp số cho tích xy lớn nhất là (2,5)
\(\left(2x+1\right)\left(y-3\right)=10<=>2x+1;y-3\inƯ\left(10\right)\)
2x+1 | 1 | 2 | 5 | 10 | -1 | -2 | -5 | -10 |
y-3 | 10 | 5 | 2 | 1 | -10 | -5 | -2 | -1 |
x | 0 | 0,5 | 2 | 4,5 | -1 | -1,5 | -3 | -5,5 |
y | 13 | 8 | 5 | 4 | -7 | -2 | 1 | 2 |
Cặp số (x;y) có tích lớn nhất là:(5;2) có tích bằng 10
=>3xy-3x=6
=>3x(y-1)=6
=>x(y-1)=2
=>\(\left(x;y-1\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;3\right);\left(2;2\right);\left(-1;-1\right);\left(-2;0\right)\right\}\)
2.
\(\frac{2}{2x+1}=\frac{y}{4}\)
\(\Rightarrow y.\left(2x+1\right)=2.4=8\)
\(\Rightarrow y;2x+1\inƯ\left(8\right)\)
Mà 2x + 1 là số lẻ \(\Rightarrow2x+1\in\left\{-1;1\right\}\)
Ta có bảng:
2x+1 | -1 | 1 |
y | -8 | 8 |
x | -1 | 0 |
Gọi \(ƯC\left(2x-y;x+y+1\right)=d\left(d\in N\right)\)
\(\Rightarrow2x-y⋮d,x+y+1⋮d\)
\(\Rightarrow\left(2x-y\right)\left(x+y+1\right)⋮d^2\Rightarrow x^2⋮d^2\Rightarrow x⋮d\) (1)
Mặt khác, \(2x-y+x+y+1⋮d\Rightarrow3x+1⋮d\) (2)
Từ (1) và (2) ta được: \(3x+1-3x⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy 2x - y và x + y + 1 là 2 số nguyên tố cùng nhau.
Mà \(\left(2x-y\right)\left(x+y+1\right)\) là số chính phương
Nên 2x - y và x + y + 1 là 2 số chính phương.