K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

nhin la bt sai de dug ko

22 tháng 7 2015

xy=84

=> x=84/y

ta có: 84/y/3=y/7

<=> 28/y=y/7

<=> 28.7=y2

<=> 196=y2

TH1: y= 14

TH2: y= -14

26 tháng 6 2017

Đặt\(\frac{x}{3}=\frac{y}{7}=k\)

\(\Rightarrow\frac{x}{3}.\frac{y}{7}=k.k\Rightarrow\frac{xy}{21}=k^2\Rightarrow\frac{84}{21}=k^2\Rightarrow4=k^2\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Khi k = 2 thì: \(\frac{x}{3}=2\Rightarrow x=6;\frac{y}{7}=2\Rightarrow y=14\)

Khi k = -2 thì: \(\frac{x}{3}=-2\Rightarrow x=-6;\frac{y}{7}=-2\Rightarrow y=-14\)

Vậy: (x;y) = {(6; 14); (-6; -14)}

26 tháng 6 2017

Đặt \(\frac{x}{3}=\frac{y}{7}=k\left(k>0\right)\)

=> x= 3k ,  y= 7k

Theo đề bài ta có : xy= 8 => 3k.7k= 84 => 21k2= 84 => k2= 4 => k= 2

=> x= 6, y= 14

24 tháng 5 2018

a) Đặt \(\frac{x}{3}=\frac{y}{7}=k\)

\(\Rightarrow\)x = 3k ; y = 7k

xy = 84 hay 3k . 7k = 84 

\(\Rightarrow\)21k2 = 84

\(\Rightarrow\)k2 = 4

\(\Rightarrow\)\(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=6;y=14\\x=-6;y=-14\end{cases}}\)

24 tháng 5 2018

\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{x}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{x}=\frac{\left(1+3y\right)+\left(1+7y\right)}{12+x}=\frac{2+10y}{12+x}=\frac{2.\left(1+5y\right)}{2.\frac{1}{2}.\left(12+x\right)}=\frac{1+5y}{\frac{1}{2}.\left(12+x\right)}\)

\(\Rightarrow5x=\frac{1}{2}.\left(12+x\right)=6+\frac{1}{2}x\)

\(\Rightarrow5x-\frac{1}{2}x=6\)

\(\Rightarrow\frac{9}{2}x=6\)

\(\Rightarrow x=\frac{4}{3}\)

Từ đó suy ra  y = \(\frac{-2}{15}\)

26 tháng 6 2017

Giải:

Đặt \(\dfrac{x}{3}=\dfrac{y}{7}=k\) \(\Rightarrow\) \(\begin{cases}x=3k\\y=7k\end{cases}\)

Ta có:

\(xy=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\)

\(\Rightarrow k^2=\dfrac{84}{21}=4\Leftrightarrow k=\) \(\pm 2\)

Ta có 2 trường hợp:

Trường hợp 1: Nếu \(k=2\) \(\Rightarrow\) \(\begin{cases}x=3.2=6\\y=7.2=14\end{cases}\)

Trường hợp 2: Nếu \(k=-2\) \(\Rightarrow\) \(\begin{cases}x=3.(-2)=-6\\y=7.(-2)=-14\end{cases}\)

Vậy...

26 tháng 6 2017

Ta có: \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{xy}{3y}=\dfrac{84}{3y}\)

=> \(\dfrac{y}{7}=\dfrac{84}{3y}\Rightarrow y\cdot3y=84\cdot7\Rightarrow3y^2=588\)

=> \(y^2=196\Rightarrow\left[{}\begin{matrix}y=14\\y=-14\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{84}{14}=6\\x=\dfrac{84}{-14}=-6\end{matrix}\right.\)

Vậy.................

25 tháng 2 2022

\(\dfrac{x}{3}=\dfrac{y}{7}\Rightarrow\)\(\dfrac{x}{3}\times\dfrac{y}{7}=\dfrac{xy}{21}=\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{7}\right)^2\)

\(\dfrac{xy}{21}=\dfrac{84}{21}=4\)

\(\Rightarrow\left(\dfrac{x}{3}\right)^2=4\Rightarrow\)\(\dfrac{x}{3}=2\Rightarrow x=6\)

\(\Rightarrow\left(\dfrac{y}{7}\right)^2=4\Rightarrow\)\(\dfrac{y}{7}=2\Rightarrow y=14\)

6 tháng 3 2021

 đặt \(\dfrac{x}{3}\) = \(\dfrac{y}{7}\) = k => x=3k,y=7k

ta có x*y=84  

=> 3k*7k=84

=>21k2 =84

k2 =4 =>k =+2 hoặc -2

xét k = 2                                          xét k = -2

x=3*2=6                                          x=3*(-2)=-6

y=7*2=14                                       y=7*(-2)=-14

vậy x \(\in\) (6 hoặc -6)

vậy y \(\in\) (14 hoặc -14)

31 tháng 3 2018

Ta có : 

\(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y+x-y}{2014+2016}=\frac{x+x}{4030}=\frac{2x}{4030}=\frac{x}{2015}\)

Lại có : 

\(\frac{xy}{2015}=\frac{x}{2015}\)

\(\Leftrightarrow\)\(xy=x\)

\(\Leftrightarrow\)\(y=1\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y-x+y}{2014-2016}=\frac{y+y}{-2}=\frac{2y}{-2}=\frac{y}{-1}=\frac{1}{-1}=-1\)

Do đó : 

\(\frac{x}{2015}=-1\)

\(\Rightarrow\)\(x=-2015\)

Vậy \(x=-2015\) và \(y=1\)

Chúc bạn học tốt ~ 

20 tháng 8 2016

Dễ thấy rằng y # 0 (để cho x : y là số xác định)
Hơn nữa x # 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y # 0 (vì y # 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.

20 tháng 8 2016

Nếu x,y không nguyên thì có vô số nghiệm cứ mỗi x thay vào sẽ có 1 y 
Nếu x,y nguyên thì giải như sau 
Từ (x-1)(1-y)= -1 
Suy ra x-1, 1-y là các ước nguyên của -1 
Suy ra có các trường hợp sau 
x-1=1 <=> x=2 
1-y=-1<=> y=2 

và 
x-1= -1 <=> x=0 
1-y=1 <=> y=0 

Vậy có 2 nghiệm là (x,y) = (2,2) và (0,0)

20 tháng 9 2015

1) x + y + xy = 3 
<=> x + y + xy + 1 = 4 
<=> x(y + 1) + (y + 1) = 4 
<=> (x + 1)(y + 1) = 4 
Vì x,y nguyên nên ta xét các hệ phương trình : 
* x + 1 = 4 và y + 1 = 1 <=> (x ; y) = (3 ; 0) 
* x + 1 = -4 và y + 1 = -1 <=> (x ; y) = (-5 ; -2) 
* x + 1 = 1 và y + 1 = 4 <=> (x ; y) = (0 ; 3) 
* x + 1 = -1 và y + 1 = -4 <=> (x ; y) = (-2 ; -5) 
* x + 1 = 2 và y + 1 = 2 <=> (x ; y) = (1 ; 1) 
* x + 1 = -2 và y + 1 = -2 <=> (x ; y) = (-3 ; -3) 

Vậy phương trình có 6 nghiệm nguyên là (3 ; 0) ; (0 ; 3) ; (-2 ; -5); (-5 ; -2) ; (1;1) và (-3 ; -3) 

22 tháng 1 2017

ko biết