K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

ta có \(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\)

=> \(VT\ge3\)

mà \(3-\left(y+2\right)^2\le3\Rightarrow VP\le3\)

=> VT=VP=3 <=> ... cậu tự giải tiếp nhé

14 tháng 9 2017

thank nhieu nha

7 tháng 12 2015

Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :

http://olm.vn/hoi-dap/question/314450.html

12 tháng 9 2017

Từ \(x+y=4\Rightarrow y=4-x\)

\(\Rightarrow\left|x+2\right|+\left|y\right|=\left|x+2\right|+\left|4-x\right|=6\)(1)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :

\(\left|x+2\right|+\left|4-x\right|\ge\left|x+2+4-x\right|=6\)

Vậy để (1) xảy ra \(\Leftrightarrow\left(x+2\right)\left(4-x\right)\ge0\Leftrightarrow-2\le x\le4\)

Với x = - 2 thì y = 6 ; x = - 1 thì y = 5; x = 0 thì y = 4; x = 1 thì y = 3; x = 2 thì y = 2 ; x = 3 thì y = 1; x = 4 thì y = 0

Vậy \(\left(x;y\right)=\left\{\left(-2;6\right);\left(-1;5\right);\left(0;4\right);\left(1;3\right);\left(2;2\right);\left(3;1\right);\left(4;0\right)\right\}\)