Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đế phân số nhận giá trị nguyên
=>10x+15 chia hết cho 5x+1
=>10x+2+13 chia hết cho 5x+1
=>2(5x+1)+13 chia hết cho 5x+1
vì 5x+1 chia hết cho 5x+1
=>2(5x+1) chia hết cho 5x+1
=>13 chia hết cho 5x+1
=>5x+1 thuộc Ư(13)={1;13;-1;-13}
=>5x+1 thuộc {1;13;-1;-13}
=>5x thuộc {0;12;-2;-14}
=>x thuộc {0;2,4;-0,4;-2,8}
vì x có các giá trị nguyên
=>x=0
vậy x=0
ta có |x+3|>=0;|2y-14|>=0
=>|x+3|+|2y-14|>=0
=>S>=2016
dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0
=>x+3=0 và 2y-14=0
x=-3 và y=7
Vậy GTNN của S=2016 khi x=-3 và y=7
A=\(\frac{2n+7}{n+3}\)
\(\Rightarrow\)2n+7\(⋮\)n+3
\(\Rightarrow\)2(n+3)+1\(⋮\)n+3
\(\Rightarrow\)1\(⋮\)n+3\(\Rightarrow\)n+3\(\in\)Ư(1)={1;-1}
\(\Rightarrow\)n\(\in\){-2;-4}
\(\frac{2n+7}{n+3}=2+\frac{1}{n+3}\)
Để \(2+\frac{1}{n+3}\) là số nguyên <=> \(\frac{1}{n+3}\) là số nguyên
=> n + 3 thuộc ước của 1 => Ư(1) = { - 1; 1 }
Ta có : n + 3 = 1 => n = - 2 (TM)
n + 3 = - 1 => n = - 4 (TM)
Vậy n = { - 4; - 2 }
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
a) Vì \(\left|x-5\right|\ge0\)nên \(100-\left|x-5\right|\le100\)
Để A lớn nhất thì \(\left|x-5\right|=0\Leftrightarrow x=-5\)
Vậy A lớn nhất bằng 100 khi và chỉ khi x= -5
b) Vì \(\left|y-3\right|\ge0\)nên \(\left|y-3\right|+50\ge50\)
Để B lớn nhất thì \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy B nhỏ nhất bằng 50 khi và chỉ khi y= 3
\(A=\frac{23n+1}{n-2}=\frac{23n-46+46+1}{n-2}=\frac{23\left(n-2\right)+47}{n-2}=23+\frac{47}{n-2}\)
A là số nguyên <=> \(\frac{47}{n-2}\) là số nguyên <=> \(47⋮n-2\) hay \(n-2\inƯ\left(47\right)=\left\{-47;-1;1;47\right\}\)
<=> \(n\in\left\{-45;1;3;49\right\}\)
Kết luận:...
\(A=\frac{23n+1}{n-2}=\frac{23\left(n-2\right)+47}{n-2}=23+\frac{47}{n-2}\)
A nguyên <=> \(\frac{47}{n-2}\)nguyên
=> \(47⋮n-2\)=> \(n-2\inƯ\left(47\right)=\left\{\pm1;\pm47\right\}\)
n-2 | 1 | -1 | 47 | -47 |
n | 3 | 1 | 49 | -45 |
ta có: \(\frac{5.x+9}{x+3}\)= \(\frac{5\left(x+3\right)-6}{x+3}\)= 5 - \(\frac{6}{x+3}\)
suy ra x+3 \(\in\)Ư(6)
đến đấy bạn xét các trường hợp của x ra
nhớ bấm đúng cho mình nhé!