Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :xy-2x+3y=13
xy+3y-2x=13
y(x+3)-2x=13
y(x+3)-2x+6-6=13
y(x+3)-2(x+3)-6=13
(x+3)(y-2)=13+6=19
\(\Rightarrow\left(x+3\right)\left(y-2\right)\inƯ\left(19\right)\)\(=\left(-19;19;1;-1\right)\)
X+3 | 19 | -19 | 1 | -1 |
Y-2 | 1 | -1 | 19 | -19 |
x | 16 | -21 | -2 | -4 |
y | 3 | 1 | 21 | -17 |
Theo đề, ta có: \(\dfrac{1+2x}{18}=\dfrac{1+4x}{34}\)
\(\Leftrightarrow34\left(1+2x\right)=18\left(1+4x\right)\)
\(\Leftrightarrow34+68x=18+72x\)
\(\Leftrightarrow34-18=72x-68x\)
\(\Leftrightarrow16=4x\)
\(\Leftrightarrow x=4\)
Khi \(x=4\) vào ta có: \(\dfrac{1+4.4}{34}=\dfrac{1+6.4}{2y^2}\Leftrightarrow\dfrac{1}{2}=\dfrac{25}{2y^2}\)
\(\Leftrightarrow2y^2=50\)
\(\Leftrightarrow y^2=50\)
\(\Leftrightarrow y=\pm5\)
a, Xét : \(\frac{x}{-30}=-\frac{12}{20}=-\frac{3}{5}\Leftrightarrow5x=90\Leftrightarrow x=18\)
Xét : \(\frac{-36}{y}=\frac{-3}{5}\Leftrightarrow3y=180\Leftrightarrow y=60\)
Vậy \(x=18;y=60\)
b, \(\frac{x-1}{7}=\frac{2y+5}{3}\)và \(x+2y=-16\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{7}=\frac{2y+5}{3}=\frac{x+2y-1+5}{7+3}=\frac{-16+4}{10}=\frac{-12}{10}=-\frac{6}{5}\)
\(\Leftrightarrow\frac{x-1}{7}=-\frac{6}{5}\Leftrightarrow5x-5=-42\Leftrightarrow5x=-37\Leftrightarrow x=-\frac{37}{5}\)
\(\Leftrightarrow\frac{2y+5}{3}=-\frac{6}{5}\Leftrightarrow10y+25=-18\Leftrightarrow10y=-43\Leftrightarrow y=-\frac{43}{10}\)
\(\dfrac{2\text{x}-1}{3}=\dfrac{3\text{x}+1}{4}\)
\(\Leftrightarrow=\dfrac{4\left(2\text{x}-1\right)}{12}=\dfrac{3\left(3\text{x}+1\right)}{12}\)
\(\Leftrightarrow8\text{x}-4=9\text{x}+3\)
\(\Leftrightarrow8\text{x}-9\text{x}=3+4\)
\(\Leftrightarrow-x=7\)
\(\Leftrightarrow x=-7\)
có [x-y]2=1
suy ra [x-y]mũ 2= 1 mũ 2
suy ra x-1=1
x=1+1
x=2
A, Ta có : 2xy + x + y = 7
=> 2(2xy + x + y) = 2 . 7
=> 4xy + 2x + 2y = 14
=> (4xy + 2x) + 2y + 1 = 14 + 1
=> 2x(2y + 1) + (2y + 1) = 15
=> (2x + 1)(2y + 1) = 15
=> 2x + 1;2y + 1 ∈ Ư(15) ∈ {-15;-5;-3;-1;1;3;5;15}
Vậy ta có bảng :
2x + 1 | -15 | -1 | -3 | -5 | 15 | 1 | 3 | 5 |
2y + 1 | -1 | -15 | -5 | -3 | 1 | 15 | 5 | 3 |
x | -8 | -1 | -2 | -3 | 7 | 0 | 1 | 2 |
y | -1 | -8 | -3 | -2 | 0 | 7 | 2 | 1 |
=> (x;y) = (-8;-1);(-1;-8);(-2;-3);(-3;-2);(7;0);(0;7);(1;2);(2;1)
\(xy+2x+3y=0\)
\(\Leftrightarrow xy+2x+3y+6=6\)
\(\Leftrightarrow\left(x+3\right)\left(y+2\right)=6\)
Mà \(x,y\)là các số nguyên nên \(x+3,y+2\)là các ước của \(6\).
Ta có bảng giá trị:
x+3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
y+2 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
x | -9 | -6 | -5 | -4 | -2 | -1 | 0 | 3 |
y | -3 | -4 | -5 | -8 | 4 | 1 | 0 | -1 |