K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2020

tại sao \(\frac{x1+x2}{2}< 2\)

NV
25 tháng 6 2020

\(y'=g\left(x\right)=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)

Để hàm số đồng biến trên khoảng đã cho

\(\Leftrightarrow g\left(x\right)\ge0;\forall x\ge2\)

\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m-\frac{1}{2}\right)^2+\frac{21}{4}>0;\forall m\)

\(\Rightarrow\) Để \(g\left(x\right)\ge0;\forall x\ge2\Leftrightarrow x_1< x_2\le2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\frac{1}{3}\left(2m^2-3m+2\right)-\frac{4}{3}\left(m+1\right)+4\ge0\\\frac{2}{3}\left(m+1\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\2m< 10\end{matrix}\right.\) \(\Rightarrow-2\le m\le\frac{3}{2}\)

3 tháng 4 2019

15 tháng 2 2017

Đáp án A

22 tháng 2 2018

20 tháng 8 2019

19 tháng 11 2018

Chọn D.

Tập xác định: D =  ℝ

Ta có

Xét m = 1, ta có y' = -3 < 0 ∀ x ∈ ℝ  nên nghịch biến trên tập xác định.

Xét m ≠ 1 Để hàm số trên nghịch biến trên tập xác định khi và chỉ khi 

Vậy với  - 2 7 ≤ m ≤ 1 thì hàm số y =  ( m - 1 ) x 3 + ( m - 1 ) x 2 - ( 2 m + 1 ) + 5  nghịch biến trên tập xác định.

28 tháng 9 2019

15 tháng 7 2019

Đáp án: D.

Hàm số đồng biến trên tập xác định R khi và chỉ khi

y' = 3 x 2  - 4mx + 12 ≥ 0, ∀ x ⇔ ∆ ' = 4m2 - 36 ≤ 0 ⇔ -3  ≤  m  ≤  3.

22 tháng 8 2018

Đáp án: D.

Hàm số đồng biến trên tập xác định R khi và chỉ khi

y' = 3 x 2  - 4mx + 12 ≥ 0, x Δ' = 4 m 2  - 36 ≤ 0 -3 ≤ m ≤ 3.

3 tháng 6 2018

Chọn B

Phương pháp:

Tính y'.

Tìm m để 

Cách giải:

Ta có 

Xét phương trình y' = 0  có 

Suy ra phương trình y' = 0 luôn có hai nghiệm 

Dễ thấy  trong khoảng  thì hàm số đồng biến.

Bài toán thỏa 

Do 

 

Vậy có  giá trị của m thỏa mãn bài toán.

Chú ý:

Cách khác: Tìm m để 

Theo định lí Viet, ta có 

Hàm số đồng biến trên  ( 2 ; + ∞ )   ⇔   phương trình y' = 0 có hai nghiệm 

 

Vậy có 1001 số nguyên m thuộc khoảng (-10000;10000)

 

28 tháng 2 2019