Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(0\right)=b=3;f\left(-1\right)=-a+b=1\)
\(\left\{{}\begin{matrix}b=3\\-a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=2\end{matrix}\right.\)
f(0)=3
a.0+b=3
0+b=3
=>b=3
biết b=3
f(-1)=1
a.-1+3=1
-a=1-3
-a=-2
=>a=2
vậy a=2;b=3
Do x = -1 là nghiệm của phương trình
⇒ a - b - 1 - 2 = 0
⇒ a - b = 3
Tương tự ta có a + b = 1
Vậy a = 2 ; b = -1
bây h giải còn kịp ko bạn. mk làm nhé
ta có f(x)= a.x+b
=> f(1)= a+b=1 => a=1-b; b=1-a (1)
f(2)= a.2+b = 4 (2)
Từ 1 và 2 : thay a=1-b
=> (1-b).2+b=4
=>2-2b+b=4
=>2-b.(-1)=4
=>-b=-2
=>b=2
Lại cũng từ 1 và 2 thay b=1-a
=> 2a+1-a=4
=>a+1=4
=>a=3
vậy a=3,b=2
Lời giải:
Ta có:
$f(1)=a+b+c$
$f(-2)=4a-2b+c$
$\Rightarrow 2f(-2)+3f(1)=2(4a-2b+c)+3(a+b+c)=11a-b+5c=0$
$\Rightarrow f(-2)=\frac{-3}{2}f(1)$
Vì $\frac{-3}{2}<0$ nên $f(-2)$ và $f(1)$ không thể cùng dấu.
\(f\left(0\right)=2010\Rightarrow a.0^2+b.0+c=2010\Rightarrow c=2010\)
\(f\left(1\right)=2011\Rightarrow a.1^2+b.1+c=2011\Rightarrow a+b+c=2011\)
\(\Rightarrow a+b+2010=2011\Rightarrow a+b=1\) (1)
\(f\left(-1\right)=2012\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=2012\)
\(\Rightarrow a-b+c=2012\Rightarrow a-b+2010=2012\)
\(\Rightarrow a-b=2\Rightarrow a=b+2\)
Thế vào (1) \(\Rightarrow b+2+b=1\Rightarrow2b=-1\Rightarrow b=-\dfrac{1}{2}\)
\(\Rightarrow a=b+2=-\dfrac{1}{2}+2=\dfrac{3}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{1}{2}x+2010\)
\(\Rightarrow f\left(-2\right)=\dfrac{3}{2}.\left(-2\right)^2-\dfrac{1}{2}.\left(-2\right)+2010=2017\)
mặc kệ biến chú tâm vào hệ trong ngoặc rồi mũ nó lên
a)1
b)1
Vì f(x)=ax2+b mà f(0)=3 nên f(0)=a.0+b=3 => f(0)=b=3
Vì f(x)=ax2+b mà f(-2)=-9 nên f(-2)=a.(-2)2+b=-9=>a.4+b=-9 Thay b= 3 ta được :a.4+3=-9=>a.4=-12=>a=-3
Vậy b=3 ;a=-3
nhớ k