Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 có thể làm như sau:
y2=x(x+1)(x+7)(x+8)=[x(x+8)][(x+1)(x+7)]=(x2+8x)(x2+8x+7)y2=x(x+1)(x+7)(x+8)=[x(x+8)][(x+1)(x+7)]=(x2+8x)(x2+8x+7)
Đặt x2+8x=kx2+8x=k
Suy ra y2=k(k+7)→4y2=4k2+28k→4y2=(2k+7)2−49→(2k+7−2y)(2k+7+2y)=49y2=k(k+7)→4y2=4k2+28k→4y2=(2k+7)2−49→(2k+7−2y)(2k+7+2y)=49 đến đây có phương trình ước số xét ước của 4949 là xong.
Đáp số: (x,y)=(−4,12),(−4,−12),(−7,0),(−1,0)(x,y)=(−4,12),(−4,−12),(−7,0),(−1,0)
Mình không nhìn không kỹ, toàn đã post bài đó, mong mod xóa bài này hộ mình
Kushito Kamigaya tham khảo nhé:
x² + (x+y)² = (x+9)²
<=> (x+y)² = (x+9)² - x²
<=> (x+y)² = 9(2x+9) (*)
Vì: 9 = 3² nên từ (*) ta thấy (2x+9) phải là số chính phương
=> 2x+9 = n² => 2x = (n-3)(n+3) => x = (n-3)(n+3)/2
n-3 và n+3 cùng chẳn hoặc cùng lẽ, nên x nguyên dương khi n là số lẽ lớn hơn 3
đặt n = 2k+1 với k > 1, (k nguyên)
có: 2x + 9 = (2k+1)² = 4k²+4k+1
=> x = 2k²+2k-4, thay x vào (*)
(x+y)² = 9(2k+1)² => x+y = 3(2k+1) = 6k+3 => y = 6k+3-x
=> y = 6k + 3 - 2k² - 2k + 4 = -2k² + 4k + 7 > 0
=> k² - 2k < 7/2 => (k-1)² < 7/2+1 = 9/2
=> k-1 < 3/√2 => k - 1 ≤ 2 => k ≤ 3
với đk k > 1 ở trên ta chỉ chọn được k = 2 hoặc k = 3
*k = 2 => x = 8, y = 7
*k = 3 => x = 20, y = 1
1,10x2+29xy+21y2=2001
=>10x2+15xy+14xy+21y2=2001
=>5x(2x+3y)+7y(2x+3y)=2001
=>(5x+7y)(2x+3y)=2001=1.2001=2001.1=3.667=667.3=......(còn nghiệm âm nữa)
tới đây thì phải giải HPT thôi(dài) ,tạm thời mình chưa nghĩ ra cách nào ngắn hơn
\(3xy+x-y=1\)<=>\(3\left(3xy+x-y\right)=3\)<=>\(9xy+3x-3y=3\)
<=>\(9xy+3x-3y-1=0\)<=>\(3x\left(y+1\right)-3\left(y+1\right)=0\)
<=>\(\left(y+1\right)\left(3x-3\right)=0\)<=>\(\orbr{\begin{cases}y+1=0\\3x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=-1\\x=1\end{cases}}\)
Với y=-1 => x=0
Với x=1 => y=0
Vậy ................
3xy+x-y=1 <=> 3xy+x=y+1 <=> x(3y+1)=y+1
=> x=\(\frac{y+1}{3y+1}\)<=> 3.x=\(\frac{3y+3}{3y+1}=\frac{3y+1+2}{3y+1}=1+\frac{2}{3y+1}\)
Để x nguyên thì 2 chia hết cho 3y+1 => có các TH:
+/ 3y+1=-1 => y=-2/3 => Loại
+/ 3y+1=1 => y=0; => 3x=1+2=3 => x=1
+/ 3y+1=-2 => y=-1 ; x=0
+/ 3y+1=2 => y=1/3 (Loại)
ĐS: \(\hept{\begin{cases}x=0;y=-1\\x=1;y=0\end{cases}}\)