Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{a-1}{2}=\frac{2\left(b-2\right)}{2.3}=\frac{3\left(x-3\right)}{3.4}\)
\(\Rightarrow\frac{a-1}{2}=\frac{2b-4}{6}=\frac{3x-9}{12}\)
Mà đề ra: \(a-2b+3c=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{a-1}{2}=\frac{2b-4}{6}=\frac{3c-9}{12}=\frac{a-1-2b+4+3c-9}{2-6+12}=1\)
\(\Rightarrow\frac{a-1}{2}=1\Rightarrow a-1=2\Rightarrow x=3\)
\(\Rightarrow\frac{b-2}{3}=1\Rightarrow b-2=3\Rightarrow b=5\)
\(\Rightarrow\frac{c-3}{4}=1\Rightarrow c-3=4\Rightarrow c=7\)
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Ta có:
\(3x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{3}\) và \(y-x=5\)
Áp dụng tính chất của dạy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=\frac{5}{1}=5\)
\(\hept{\begin{cases}\frac{x}{4}=5\Rightarrow x=5.4=20\\\frac{y}{5}=5\Rightarrow y=5.5=25\end{cases}}\)
Vậy \(x=20;y=25\)
b)
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và \(a-2b+3c=35\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a-2b+3c}{3-2.4+3.5}=\frac{35}{10}=3,5\)
\(\hept{\begin{cases}\frac{a}{3}=3,5\Rightarrow a=3,5.3=10,5\\\frac{b}{4}=3,5\Rightarrow b=3,5.4=14\\\frac{c}{5}=3,5\Rightarrow c=3,5.5=17,5\end{cases}}\)
Vậy \(a=10,5;b=14;c=17,5\)
Bài 1: \(3x=4y\Leftrightarrow y=\frac{3x}{4}\)
thay vào \(y-x=5\Leftrightarrow\frac{3x}{4}-x=5\Leftrightarrow\frac{-x}{4}=5\Leftrightarrow x=-20\Leftrightarrow y=\frac{3x}{4}=\frac{3.\left(-20\right)}{4}\)=-15
Bài 2: Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{3c}{15}=\frac{a-2b+3c}{3-8+15}=\frac{35}{10}=\frac{7}{2}\)
=>\(a=\frac{7}{2}.3=\frac{21}{2};b=\frac{7}{2}.4=14;c=\frac{7}{2}.5=\frac{35}{2}\)
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{4}$
$=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b+3c}{2+6+12}=\frac{-20}{20}=-1$
$\Rightarrow a=2(-1)=-2; b=3(-1)=-3; c=4(-1)=-4$
2.
$S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{9900}$
$=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
a) Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=\dfrac{-20}{20}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right)\cdot2=-2\\b=\dfrac{\left(-1\right).6}{2}=-3\\c=\dfrac{\left(-1\right).12}{3}=-4\end{matrix}\right.\)
b) Ta có : \(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\).
Vậy : \(S=\dfrac{99}{100}.\)
a)\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=-\dfrac{20}{20}=-1\)
\(\left\{{}\begin{matrix}\dfrac{a}{2}=-1\Leftrightarrow a=-2\\\dfrac{b}{3}=-1\Leftrightarrow b=-3\\\dfrac{c}{4}=-1\Leftrightarrow c=-4\end{matrix}\right.\)
b)\(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
Áp dụng dãy tỉ số bằng nhau ta có :
a/2 = b/3 = c/4 = a+ 2b - 3c / 2 + 6 - 12 = -20 / -4 = 5
Vậy a = 5. 2 = 10
b = 5. 3 = 15
c = 5. 4 = 20
TÍCH ĐÚNG CHO MÌNH NHA
Ta co : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) va a+2b-3c=-20
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) va a+2b-3c=-20
Áp dụng tính chất tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\Rightarrow\frac{a+2b-3c}{2+6-12}=-\frac{20}{-4}=5\)
Suy ra :\(\frac{a}{2}=5\Rightarrow a=5.2=10\)
\(\frac{2b}{6}=5\Rightarrow b=5.6=30\)
\(\frac{3c}{12}=5\Rightarrow c=5.12=60\)
Vay : a=10
b=30
c=60
Theo đề, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và a+2b-3c=-20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\)\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
=> \(\frac{a}{2}=5\)
\(\frac{b}{3}=5\)
\(\frac{c}{4}=5\)
=> a =10
b =15
c =20
bạn kiểm tra lại thử nha,Trần Trương Quỳnh Hoa!nếu thấy đúng thì tick cho mình nha!
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+2b-3c}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\\ \Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)