Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abc (1<=a<=9;0<=b;c<=9)
Số viết ngược lại là cba.
Ta có:abc-cba=n2
=>(100a+10b+c)-(100c+10b+a)=n2
=>100a+10b+c-100c-10b-a=n2
=>(100a-a)+(10b-10b)+(c-100c)=n2
=>99a-99c=n2
=>99(a-c)=n2
=>32.11.(a-c)=n2
Để 11(a-c) là SCP thì a-c=11k2 nên a-c chia hết cho 11
Do đó a=c
KL:các số thỏa mãn có dạng là cba
Đúng 100%
Đặt số A là \(\overline{aabb}\)\(=n^2\) \(a,b\in N;\)\(1\le a\le9\)\(;0\le b\le9\)
\(\Rightarrow10^3a+10^2a+10b+b=n^2\)\(\Leftrightarrow11\left(100a+b\right)=n^2\)\(\Leftrightarrow11\left(99a+a+b\right)=n^2\) (1).
Do đó \(99a+a+b\) chia hết cho 11 nên \(a+b\) chia hết cho 11. Vậy, \(a+b=11\)
Thay \(a+b=11\) vào (1) ta được \(11\left(99a+11\right)=n^2=11^2\left(9a+1\right)\) . Do đó \(9a+1\) phải là số chính phương.
Thử với \(a=1,2,3,...,9\) chỉ có \(a=7\) thỏa \(9a+1=9.7+1=64=8^2\) là số chính phương. Vậy, \(a=7\)
Mà \(a+b=11\Rightarrow b=11-a=11-7=4\) Vậy số A cần tìm là \(7744\).
+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
.+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
Gọi số cần tìm là abcd
Vì số chính phương không có tận cùng bằng 3, 8 nên d=6
Ta có: abc6 là số chính phương
abc6<9997
Coi abc6=E2
=> 3886<E2<8836
=> 62,34 < E < 94
=> E\(\in\){63,64,...,93,94}
E tận cùng bằng 4 hoặc 6 ( khi bình mới tận cùng là 6)
\(\Rightarrow E\in\left\{64;66;74;76;84;86;94\right\}\)
Ta chỉ có óố 94 khi bình lên được 8836.
Vậy số cần tim là 8836
Dung làm đúng , nhưng làm thế này nhanh hơn :
Gọi n2 là số chính phương phải tìm .
Số chính phương không có tận cùng là 3 , 8 do đó n2 phải có tận cùng bằng 6 .
Số có tận cùng bằng 86 chia hết cho 2 không chia hết cho 4 nên không là số chính phương . Vậy n2 có tận cùng bằng 36 .
Số chính phương đó là 8836 = 942
đặt abcd=x^2
abcd+72=y^2 (x,y thuộc N,y>x)
ta có pt: y^2-x^2=72
<=>(y-x)(y+x)=72=1*72=2*36=3*24=4*18=6... (do y+x>=y-x)
giải các hệ trên tìm x===>abcd=x^2