Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(6a+1\right)⋮\left(3a-1\right)\)
\(\Rightarrow\left[\left(6a-2\right)+3\right]⋮\left(3a-1\right)\)
\(\Rightarrow\left[2\left(3a-1\right)+3\right]⋮\left(3a-1\right)\)
Vì \(2\left(3a-1\right)⋮\left(3a-1\right)\)nên để \(\Rightarrow\left[2\left(3a-1\right)+3\right]⋮\left(3a-1\right)\)thì \(3⋮\left(3a-1\right)\)
\(\Rightarrow3a-1\inƯ\left(3\right)\)
\(\Rightarrow3a-1\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow3a\in\left\{2;0;4;-2\right\}\)
\(\Rightarrow a\in\left\{\frac{2}{3};0;\frac{4}{3};\frac{-2}{3}\right\}\)
Mà \(a\in Z\)
\(\Rightarrow a=0\)
Vậy \(a=0\)
6a+1 chia hết 3a-1
=> 2(3a-1)+3 chia hết cho 3a-1
=> 3 chia hết cho 3a-1
=> 3a-1 là Ư(3)={1;-1;3;-3}
Vì 3a-1 chia 3 dư 2 hoặc -1
=> 3a-1=-1
=> a=0
6a+1 chia hết 3a-1
=> 2(3a-1)+3 chia hết cho 3a-1
=> 3 chia hết cho 3a-1
=> 3a-1 là Ư(3)={1;-1;3;-3}
Vì 3a-1 chia 3 dư 2 hoặc -1
=> 3a-1=-1
=> a=0
6a+1 chia hết cho 3a-1
=>(6a-2)+3 chia hết cho 3a-1
=>2(3a-1)+3 chia hết cho 3a-1
=>2(3a-1) chia hết cho 3a-1
=>3 chia hết cho 3a-1
Vậy 3a-1 thuôch Ước của 3={1,-1,3,-3}
Ta xét từng trường hợp của a:
Với 3a-1=1 thì a= 2/3 (loại)
Với 3a-1=-1 thì a=0(thỏa mãn)
Với 3a-1=3 thì a=1/3( loại)
Với 3a-1=-3 thì a=2/3(loại)
Vậy a=0.
a, 3n−1∈Ư(12)={±1;±2;±3;±4;±6;±12}
b,
Để phân số :2n+372n+37 có giá trị là số nguyên thì 2n+3:7
\(\implies\) 2n+3=7k2n+3=7k
\(\implies\) 2n=7k-3
\(\implies\) n=7k−327k−32
Vậy với mọi số nguyên n có dang 7k−327k−32 thì phân số 2n+372n+37 có giá trị là số nguyên
:))
\(a\in\left(\frac{-2}{3};0;\frac{2}{3};\frac{4}{3}\right)\)
a làm cho trường hợp a-b=4. trường hợp a-b=7 em lam tương tự nhé
ta có 0<=a;b <=9
=>a+b <=18
mặt khác a-b =4 =>a>=4 => a+b >=4
a -b =4 => a và b phải cùng chẵn hoặc cùng lẻ => a+b là 1 số chẵn
7a5b1 chia hết cho 3
<=> (7+a+5+b+1) chia het cho 3
<=> (13+a+b) chia hết cho 3 (với 4<= a+b <=18 và a+b là 1 số chẵn )
=> (a+b) thuộc {8; 14}
* th1: nếu a +b=8 ; a-b=4 (dạng toán tìm 2 số khi biết tổng và hiệu)
a=(8+4):2=6
b=6-4=2
* th2: nếu a+b=14 ; a-b=4
a=(14+4) :2=9
b=9-4=5
vậy (a;b) thuộc { (6;2) ;(9;5)}
6a+1 \(\vdots\) 3a+1
=> \(\dfrac{6a+1}{3a+1}=\dfrac{3a+3+1}{3a+1}=\dfrac{3a+1}{3a+1}+\dfrac{3}{3a+1}=1+\dfrac{3}{3a+1} \) \(\in Z\)
mà \(1 \in Z\)
=> \(\dfrac{3}{3a+1} \in Z\) => \(3a+1 \in \) Ư(3) = { -3 ; -1 ; 1 ; 3 }
Ta có bảng sau :
Vì a là số nguyên => a=0
Vậy..