K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

Ta có: \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]=\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\)

Mà \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]\) có kết quả là số nguyên

Nên \(\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\) cũng phải có kết quả là số nguyên. Hay \(\frac{n}{2};\frac{n}{3};\frac{n}{4}\) đều là số nguyên.

=> n chia hết cho cả 2;3 và 4 

Vậy n sẽ là Bội của 2;3;4 hay n = 24k (k \(\in\) N*, k < 84) (BCNN(2;3;4)=24)

\(n\in\left\{24;48;72;96;120;...;1992\right\}\) Không có số 0 vì số 0 không phải là số nguyên dương.

17 tháng 8 2015

Em Xét 2 trường hợp: n = 2k và n = 2k + 1

24 tháng 2 2016

ta xét 2 TH:

+)A>0 (luôn đúng)

+)ta có : 1/n2 < 1/(n-1).n với n>1

=>\(A<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2013}-\frac{1}{2014}=\frac{1}{1}-\frac{1}{2014}=\frac{2013}{2014}<1\)

=>A<1

do đó 0<A<1 <=>[A]=0

19 tháng 3 2017
suy ra
29 tháng 1 2016
  • Yêu cầu, gợi ý các bạn khác chọn () đúng cho mình
  1. 6

 

28 tháng 1 2016

0

29 tháng 1 2016

bạn làm thế nào vậy?

5 tháng 12 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{2014^2}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{2013.2014}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2013}-\frac{1}{2014}=1-\frac{1}{2014}\)

A<B<1

[A]=0