Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{6;4;8;2\right\}\)
b: \(\Leftrightarrow3n-18+18⋮n-6\)
\(\Leftrightarrow n-6\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
hay \(n\in\left\{7;5;8;4;9;3;12;0;15;-3;24;-12\right\}\)
a) \(-3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(-3\right)=\left\{-1;1;-3;3\right\}\)
Có bảng sau:
n-5 | -1 | 1 | -3 | 3 |
n | 4 | 6 | 2 | 8 |
Vậy...
b)
\(\begin{matrix}3n⋮n-6\\n-6⋮n-6\end{matrix}\)\(\Leftrightarrow\left\{{}\begin{matrix}3n⋮n-6\\3n-18⋮n-6\end{matrix}\right.\){18\(⋮\) n-6
\(\Leftrightarrow n-6\inƯ\left(18\right)=\left\{1,2,3,6,9,18,-1,-2,-3,-6,-9,-18\right\}\)
Có bảng sau:
n-6 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 9 | -9 | 18 | -18 |
n | 7 | 5 | 8 | 4 | 9 | 3 | 12 | 0 | 15 | -3 | 24 | -12 |
Vậy...
Để \(\frac{3n+4}{n-1}\)là số nguyên thì:
\(3n+4⋮n-1\)
Mà \(3\left(n-1\right)⋮n-1\)
nên \(3n+4-3\left(n-1\right)⋮n-1\\ \Rightarrow7⋮n-1\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{2;0;8;-6\right\}\)
Bài kia bạn nhân 3n+1 lên 2 lần rồi làm tương tự
1,S=2-4-6+8+10-12-14+16+.......+1994-1996-1998+2000
S =(2-4-6+8)+(10-12-14+16)+......+(1994-1996-1998+2000)
S= 0 +0+........+0
S=0
2/ Vì 13 chia hết cho x-2
-> x-2 thuộc Ư(13)={1;13;-1;-13}
ta có bảng
x-2 | 1 | 13 | -1 | -13 |
x | 3 | 15 | 1 | -11 |
3/ Vì -15chia hết cho n-3->n-3 thuộc Ư(-15)={1;3;5;15;-1;-3;-5;-15}
Ta có bảng
n-3 | 1 | 3 | 5 | 15 | -1 | -3 | -5 | -15 |
n | 4 | 6 | 8 | 18 | 2 | 0 | -2 | -12 |
4/ n-2 thuộc Ư(3)={1;3;-1;-3}
ta có bảng
n-2 | 1 | 3 | -1 | -3 |
n | 3 | 5 | 1 | -1 |
b: Để A nguyên thì 2n+3 chia hết cho n
=>3 chia hết cho n
=>n thuộc {1;-1;3;-3}
c: Th1: n=2
=>n+3=5(nhận)
TH2: n=2k+1
=>n+3=2k+4=2(k+2)
=>Loại
d: Gọi d=ƯCLN(2n+3;2n+5)
=>2n+5-2n-3 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>PSTG
Tìm tất cả các số tự nhiên n để :
a/ n^2 +12n là số nguyên tố
b/ 3^n +6 là số nguyên tố
a: Để A nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{-1;-3;1;-5\right\}\)
b: n+6/n+7
Gọi d=ƯCLN(n+6;n+7)
=>n+6-n-7 chiahết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=1+\frac{5}{n+1}\)
Để ( n + 6 ) \(⋮\)( n + 1 ) thì 5 \(⋮\)( n + 1 ) hay ( n + 1 ) là Ư(5)={ 1 ; -1 ; 5 ; -5 }
Do đó :
- n + 1 = 1 => n = 0
- n + 1 = -1 => n = -2
- n + 1 = 5 => n = 4
- n + 1 = -5 => n = -6
Vậy x \(\in\){ 0; -2; 4; -6 }
Để \(\frac{n+6}{n+1}\)nguyên
=> 1+\(\frac{5}{n+1}\)nguyên
->\(\frac{5}{n+1}\)nguyên
=> n+1 \(\in\)Ư(5)=1;-1;5;-5
n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
nhận xét | TM | TM | TM | TM |
Vậy để \(\frac{n+6}{n+1}\)nguyên thì n=0;-2;4;-6
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
\(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
\(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
Em nói rõ yêu cầu của đề bài ra em nhé.