K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(13p+1=n^3\left(n\in N\right)\)

\(\Leftrightarrow13p=n^3-1\)

\(\Leftrightarrow13p=\left(n-1\right)\left(n^2+n+1\right)\)

Trường hợp 1: \(n-1=13\forall n^2+n+1=p\)

\(\Leftrightarrow n=14\)

hay \(p=14^2+14+1=196+14+1=211\)(nhận)

Trường hợp 2: \(n-1=p\forall n^2+n+1=p\)

\(\Leftrightarrow n^2+2=13-p\)

\(\Leftrightarrow\left(p+1\right)^2=11-p\)

\(\Leftrightarrow p=2\)(nhận)

Vậy: \(p\in\left\{2;211\right\}\)

10 tháng 10 2019

Đặt \(13p+1=n^3\left(n\ge0\right)\)

\(\Leftrightarrow13p=n^3-1\)

\(\Leftrightarrow13p=\left(n-1\right)\left(n^2+n+1\right)\)

\(Th1:\hept{\begin{cases}n-1=13\\n^2+n+1=p\end{cases}}\Rightarrow n=14\Rightarrow p=211\)

\(Th2:\hept{\begin{cases}n-1=p\\n^2+n+1=13\end{cases}}\Rightarrow n^2+2=13-p\)

\(\Rightarrow\left(p+1\right)^2=11-p\Rightarrow p=2\)

10 tháng 10 2019

Đặt 13p + 1 = n3(n>2)

=> 13p = (n - 1)(n2 + n + 1)

Ta có 2 TH :

TH1: n - 1 = 13 ∀∀ n2 + n + 1 = p => n = 14 => p =221

TH2: n - 1 = p∀∀ n2 + n + 1 = 13 => n2 + 2 = 13 - p => (p+1)2 = 11 - p => p = 2

Vậy \(p\in\left\{221;2\right\}\)

1 tháng 1 2022

cần gấp ạ

 

1 tháng 1 2022

undefined

tk 

18 tháng 9 2016

5757

25445

254

5434

853

18 tháng 9 2016

Ghi rõ đề coi nào bn! 

13 tháng 11 2015

1,40 số

2,100008

3,10;12;15;30;60;

4,n=1;5

5,450;560;460;405;504;506;605;406;604

làm nốt đi

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước