K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2013}-1\right)\)

\(-A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2013}\right)\)

\(-A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2012}{2013}\)

\(-A=\frac{1}{2013}\)

\(A=\frac{-1}{2013}\)

31 tháng 7 2019

Con bai 2 dau ban

13 tháng 12 2017

\(P=\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}\)

    \(=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}\)

     \(=2+\frac{1}{n-1}\)

Do đó, (n-1)\(\in\)Ư(1)

       \(\Rightarrow\)n- 1= -1 và n - 1=1

      \(\Rightarrow\)n=0 và n=2

13 tháng 12 2017

cam on nhieu

18 tháng 6 2017

Oái gặp bn trùng tên nè!

a) Để phân số \(\dfrac{a^2+a+3}{a+1}\) là số nguyên thì :

\(a^2+a+3⋮a+1\)

\(a+1⋮a+1\)

\(\Rightarrow\left\{{}\begin{matrix}a^2+a+3⋮a+1\\a^2+a⋮a+1\end{matrix}\right.\)

\(\Rightarrow3⋮a+1\)

\(a\in Z\Rightarrow a+1\in Z;a+1\inƯ\left(3\right)\)

Ta có bảng :

\(a+1\) \(1\) \(3\) \(-1\) \(-3\)
\(a\) \(0\) \(2\) \(-2\) \(-4\)
\(Đk\) \(a\in Z\) TM TM TM TM

Vậy \(a\in\left\{0;2;-2;-4\right\}\) là giá trị cần tìm

b) Ta có :

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy-2y=0\)

\(\Rightarrow\left(2x-4xy\right)+2y-1=0-1\)

\(\Rightarrow\left(2x-4xy\right)-\left(1-2y\right)=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(1-2y\right)\left(2x-1\right)=-1\)

\(x,y\in Z\Rightarrow1-2y;2x-1\in Z,1-2y;2x-1\inƯ\left(-1\right)\)

Ta có bảng :

\(x\) \(2x-1\) \(1-2y\) \(y\) \(Đk\) \(x,y\in Z\)
\(0\) \(-1\) \(1\) \(0\) TM
\(1\) \(1\) \(-1\) \(1\) TM

Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là :

\(\left(0,0\right);\left(1,1\right)\)

18 tháng 6 2017

b) \(x-2xy+y=0\)

\(\Rightarrow x-\left(2xy-y\right)=0\)

\(\Rightarrow x-y\left(2x-1\right)=0\)

\(\Rightarrow2x-2y\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)-2y\left(2x-1\right)=0-1=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Ta có:

TH1: \(\left\{{}\begin{matrix}2x-1=1\\1-2y=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

TH2:\(\left\{{}\begin{matrix}2x-1=-1\\1-2y=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy...................