Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$
$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:
$2x-1=x-1\Leftrightarrow x=0$ (không thỏa mãn vì $x\geq 1$)
Vậy không tồn tại $x$ thỏa đề.
Bài 2:
Nếu $x\geq \frac{1}{3}$ thì:
$3x-1=2x+3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{3}$ thì:
$1-3x=2x+3$
$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)
Vậy......
1)
câu a:
x-(3-5x)=-2x-5
<=> x-3+5x=-2x-5
<=> x+5x+2x=-5+3
<=> 8x=-2
<=> x = -1/2
Câu b: -3x-|x-2| = 6
<=> -|x-2|=6+3x
<=> |x-2| = -(6+3x) = -6-3x
TH1 nếu x - 2 > 0 thì |x-2| = x-2
ta có: x-2 = -6-3x
<=> x +3x = -6+2
<=> 4x = -4
<=> x = -1 (loại vì x = -1 thì x - 2 < 0)
TH2 nếu x - 2 < 0 thì |x-2| = -(x-2)
ta có: -(x-2) = -6-3x
<=> -x+2 = -6-3x
<=> -x+3x = -6-2
<=> 2x = -8
<=> x = -4
Vậy x = - 4
bài 2: (5-m)(2m-1) > 0
để tích (5-m)(2m-1) > 0 thì
(5-m) và (2m-1) cùng âm hoặc cùng dương
TH1
5-m>0 và 2m-1
5-m>0 ,<=> m<5 và 2m-1 > 0 => m>1/2
<=> 1/2<m<5
=> m = {1; 2; 3; 4}
TH2:
5 - m < 0 => m > 5 và 2m-1 < 0 => 2m<1 => m<1/2
m>5 và m<1/2 => không có giá trị nào của m thỏa mãn
Vậy m \(\in\) {1; 2; 3; 4}
\(\left(2x-1\right).\left(2x-5\right)< 0.\)
Vì \(2x-1>2x-5\)nên
\(\Rightarrow\hept{\begin{cases}2x-1>0\\2x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}2x>1\\2x< 5\end{cases}\Rightarrow}}\hept{\begin{cases}x>\frac{1}{2}\\x< \frac{5}{2}\end{cases}\Leftrightarrow\frac{1}{2}< x< \frac{5}{2}}\)
Vậy \(\frac{1}{2}< x< \frac{5}{2}\)thỏa mãn đề bài