Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\left|2x-1\right|=x-1\)ĐK : \(x\ge1\)
TH1 : \(2x-1=x-1\Leftrightarrow x=0\)(ktm)
TH2 : \(2x-1=1-x\Leftrightarrow3x=2\Leftrightarrow x=-\frac{2}{3}\)(ktm)
Vậy biểu thức ko có x thỏa mãn
Bài 2 :
\(\left|3x-1\right|=2x+3\)ĐK : x >= -3/2
TH1 : \(3x-1=2x+3\Leftrightarrow x=4\)
TH2 : \(3x-1=-2x-3\Leftrightarrow5x=-2\Leftrightarrow x=-\frac{2}{5}\)
Bài 1:
$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$
$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:
$2x-1=x-1\Leftrightarrow x=0$ (không thỏa mãn vì $x\geq 1$)
Vậy không tồn tại $x$ thỏa đề.
Bài 2:
Nếu $x\geq \frac{1}{3}$ thì:
$3x-1=2x+3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{3}$ thì:
$1-3x=2x+3$
$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)
Vậy......
|4-x|+2x=3
x=-1(do giair phuongw trinhf)
\(\left|4-x\right|+2x=3\Rightarrow\left|4-x\right|=3-2x\)
Vì \(\left|4-x\right|\ge0\)với mọi x
\(\Rightarrow\orbr{\begin{cases}4-x=3-2x\\4-x=-\left(3-2x\right)\end{cases}\Rightarrow\orbr{\begin{cases}4-x+2x=3\\4-x=-3+2x\end{cases}}\Rightarrow\orbr{\begin{cases}4-\left(x-2x\right)=3\\4-x-2x=3\end{cases}}}\Rightarrow\orbr{\begin{cases}4-x=3\\4-3x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=1:3\end{cases}}\)
vậy x=1 hoặc x=1/3