Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy 5y2 có tận cùng = 0 hoặc 5
nên 6x2 = 74 - 5y2
\(\Rightarrow\) 6x2 có tận cùng = 4 hoặc 9
ta lại có 6x2 có tận cùng = 4 \(\Rightarrow\)5y2 có tận cùng bằng 0
xét 5y2=20\(\Rightarrow\)y2=4\(\Rightarrow\)y= 2 hoặc -2
6x2= 74-20=54\(\Rightarrow\)x2= 9\(\Rightarrow\)x= 3 hoặc -3
vậy các số nguyên x, y thỏa mãn là x=(3;-3) y=(2;-2)
6x2
+ 5y2
= 74 (1)
Ta có : 5x2
+ 5y2
=< 6x2
+ 5y2
=< 6x2
+ 6y2
<=> 5(x2
+ y2
) =< 74 =< 6(x2
+ y2
)
<=> 12,3 =< x2
+ y2
=< 14,8
<=> 13 =< x2
+ y2
=< 14 (vì x, y tự nhiên => x2
+ y2
tự nhiên)
Trường hợp 1 : x2
+ y2
= 13 (2)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 13 (2)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 65
Trừ 2 phương trình : x2
= 9 <=> x = 3 (vì x >= 0)
Thay vào (2) y2
= 13 - x2
= 13 - 9 = 4 <=> x = 2
Nghiệm : (x ; y) = (2 ; 3)
Trường hợp 2 : x2
+ y2
= 14 (4)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 14 (3)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 70
Trừ 2 phương trình : x2
= 4 <=> x = 2
Thay vào (3) : y2
= 14 - 4 = 10 <=> y = 10 (loại)
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)
6x2
+ 5y2
= 74 (1)
Ta có : 5x2
+ 5y2
=< 6x2
+ 5y2
=< 6x2
+ 6y2
<=> 5(x2
+ y2
) =< 74 =< 6(x2
+ y2
)
<=> 12,3 =< x2
+ y2
=< 14,8
<=> 13 =< x2
+ y2
=< 14 (vì x, y tự nhiên => x2
+ y2
tự nhiên)
Trường hợp 1 : x2
+ y2
= 13 (2)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 13 (2)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 65
Trừ 2 phương trình : x2
= 9 <=> x = 3 (vì x >= 0)
Thay vào (2) y2
= 13 - x2
= 13 - 9 = 4 <=> x = 2
Nghiệm : (x ; y) = (2 ; 3)
Trường hợp 2 : x2
+ y2
= 14 (4)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 14 (3)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 70
Trừ 2 phương trình : x2
= 4 <=> x = 2
Thay vào (3) : y2
= 14 - 4 = 10 <=> y = 10 (loại)
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)
\(6x^2+5y^2=74\)
<=>\(5y^2=74-6x^2\)
Vì \(5y^2\ge0=>74-6x^2\ge0\)
=>\(6x^2\le74<=>x^2\le12,3\)
mà \(x^2\) là số chính phương nên
=>\(x^2\in\left\{0;1;4;9\right\}\)
=>x={0;1;-1;-2;2;3;-3}
=>y=....
Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.