Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5.3}{3x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5.3}{3x}=\frac{1}{6}+\frac{y}{3}=\frac{1}{6}+\frac{2y}{6}\)
\(\Leftrightarrow\frac{15}{3x}=\frac{1+2y}{6}\)
\(\Rightarrow\hept{\begin{cases}15=1+2y\\3x=6\end{cases}\Rightarrow\hept{\begin{cases}15=1+2y\\x=2\end{cases}}}\)
Thế x = 2 vào,ta có:
\(\frac{15}{3.2}=\frac{15}{6}=\frac{1.2y}{6}\)
\(\Leftrightarrow\frac{15}{6}=\frac{2y}{6}\Rightarrow y=15:2=7,5=8\)
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
\(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\Leftrightarrow\frac{5x-1}{10}=\frac{1}{2y}\)
\(\Leftrightarrow2y\left(5x-1\right)=10\Leftrightarrow y\left(5x-1\right)=5\)
TH1: \(\left\{{}\begin{matrix}y=5\\5x-1=1\end{matrix}\right.\) \(\Rightarrow x=\frac{2}{5}\left(l\right)\)
TH2: \(\left\{{}\begin{matrix}y=1\\5x-1=5\end{matrix}\right.\) \(\Rightarrow x=\frac{6}{5}\left(l\right)\)
TH3: \(\left\{{}\begin{matrix}y=-1\\5x-1=-5\end{matrix}\right.\) \(\Rightarrow x=-\frac{4}{5}\left(l\right)\)
TH4: \(\left\{{}\begin{matrix}y=-5\\5x-1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;-5\right)\)
Lên đây liếc ngó mấy bài toán để 9/6 thi chuyên :''<
Đại ca dạy em học Toán với, tỉ lệ 1 chọi 5 em lo quá :((
nè, không làm thôi ằ nhagg. khó thì đừng gửi câu trả lời làm gì cho mệt nha bạn
\(\frac{x}{5}-\frac{1}{y+2}=\frac{1}{10}\)
\(\frac{1}{y+2}=\frac{x}{5}-\frac{1}{10}=\frac{2x}{10}-\frac{1}{10}=\frac{2x-1}{10}\)
\(\Rightarrow\left(y+2\right).\left(2x-1\right)=1.10=10\)
\(\Rightarrow2x-1\inƯ\left(10\right)\)
Mà 2x - 1 là lẻ
\(\Rightarrow2x-1\in\left[1;5;-1;-5\right]\)
Xét \(2x-1=1\Rightarrow x=1\)
\(\Rightarrow y+2=10\Rightarrow y=8\)
Xét \(2x-1=5\Rightarrow x=3\)
\(\Rightarrow y+2=2\Rightarrow y=0\)
Xét \(2x-1=-1\Rightarrow x=0\)
\(\Rightarrow y+2=-10\Rightarrow y=-12\)
Xét \(2x-1=-5\Rightarrow x=-2\)
\(\Rightarrow y+2=-2\Rightarrow y=-4\)
tính: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1982}+\frac{1}{1984}+\frac{1}{1986}\)
Bài 2
\(a,\)\(\left(x^2+7\right)\left(x^2-49\right)< 0\)
Vì \(x^2+7>0\)\(\Rightarrow x^2-49< 0\)
\(\Rightarrow\left(x-7\right)\left(x+7\right)< 0\)
\(...\)
Bài 2:
a) \(\left(x^2+7\right).\left(x^2-49\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)
\(\Leftrightarrow-7< x^2< 49\)
Mà \(x^2\ge0\)và \(x^2\)là 1 SCP
\(\Rightarrow x^2\in\left\{1;4;9;16;25;36\right\}\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{1;2;3;4;5;6\right\}\)
\(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x+5}{10}-\frac{6}{10}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x-1}{10}=\frac{1}{2y}\)
\(\Leftrightarrow\left(5x-1\right)2y=10\)
Lập bảng xong xét các trường hợp là ra
Ta có : \(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
=> \(\frac{x+1}{2}-\frac{1}{2y}=\frac{3}{5}\)
=> \(\frac{xy+y-1}{2y}=\frac{3}{5}\)
=> 5(xy + y - 1) = 6y
=> 5xy + 5y - 5 = 6y
=> 5xy + 5y - 6y = 5
=> 5xy - y = 5
=> y(5x - 1) = 5
Vì x ; y là số nguyên
=> Ta có 5 = 1.5 = (-1).(-5)
Lập bảng xét các trường hợp
Vậy y = - 5 ; x = 0