Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2xy - 3x + 5y = 4
=> 2(2xy - 3x + 5y) = 8
=> 4xy + 6x + 10y = 8
=> 2x(2y + 3) + 5(2y + 3) = 23
=> (2x + 5)(2y + 3) = 23
=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}
Lập bảng:
2x + 5 | 1 | -1 | 23 | -23 |
2y + 3 | 23 | -23 | 1 | -1 |
x | -2 | -3 | 9 | -14 |
y | 10 | -13 | -1 | -2 |
Vậy ...
Lời giải:
$5y-3x=2xy-11$
$\Leftrightarrow 10y-6x=4xy-22$
$\Leftrightarrow (10y-4xy)-6x+22=0$
$\Leftrightarrow 2y(5-2x)+3(5-2x)+7=0$
$\Leftrightarrow (2y+3)(5-2x)=-7$
Do $x,y$ nguyên nên có các TH sau:
$2y+3=1; 5-2x=-7\Rightarrow (x,y)=(6; -1)$
$2y+3=-1; 5-2x=7\Rightarrow (x,y)=(-1; -2)$
$2y+3=7; 5-2x=-1\Rightarrow (x,y)=(3; 2)$
$2y+3=-7; 5-2x=1\Rightarrow (x,y)=(2,-5)$
Vậy có 4 cặp số thỏa mãn.
b) Vì \(VT=25-y^2\le25\) nên \(VP=8\left(x-2012\right)^2\le25\Rightarrow\left(x-2012\right)^2\le\frac{25}{8}\)
Mà \(x\in Z\Rightarrow\left(x-2012\right)^2\in Z\) Hay \(\orbr{\begin{cases}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{cases}}\)
Xét \(\left(x-2012\right)^2=0\Rightarrow x=2012\)
\(\Rightarrow25-y^2=0\Rightarrow\orbr{\begin{cases}y=-5\\y=5\end{cases}}\)(TM)
Xét \(\left(x-2012\right)^2=1\) thay vào ta được \(25-y^2=8\Rightarrow y^2=17\)(loại)
Vậy \(\left(x;y\right)=\left\{\left(2012;-5\right);\left(2012;5\right)\right\}\)
3x - 2xy + 5y - 4 = 0
=> 3x - 2xy + 5y = 4
=> 6x - 4xy + 10y = 8
=> 2x ( 3 - 2y ) - 15 + 10y = - 7
=> 2x ( 3 - 2y ) - 5 ( 3 + 2y ) = - 7
=> ( 2x - 5 ) ( 3 - 2y ) = - 7
=> 2x - 5 ; 3 - 2y là ước của - 7
Ta có bảng :
2x - 5 | 1 | 7 | - 1 | - 7 |
3 - 2y | - 7 | - 1 | 7 | 1 |
x | 3 | 6 | 2 | - 1 |
y | 5 | 2 | - 2 | 1 |
Vậy \(\left(x,\text{y}\right)\in\left\{\left(3;5\right),\left(6;2\right);\left(2;-2\right);\left(-1;1\right)\right\}\)
Study well ! >_<