K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thiếu vế phải rồi bạn

7 tháng 12 2023

loading...

 

DD
16 tháng 5 2021

\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)

Từ đây bạn xét các trường hợp và giải ra nghiệm. 

2x(2y-14)-8(y-7)=0

=>\(4x\left(y-7\right)-8\left(y-7\right)=0\)

=>\(\left(y-7\right)\left(4x-8\right)=0\)

=>\(\left\{{}\begin{matrix}y-7=0\\4x-8=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=7\\x=2\end{matrix}\right.\)

7 tháng 12 2023

 4x (y - 7) - 8(y-7) =0

(4x-8) (y-7)=0
x=2 y =7

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Vì bài dài nên mình sẽ tách ra nhé.

1a. Ta có:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$

$=-3(-z)(-x)(-y)=3xyz$

$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$

------------------------

$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$

$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$

$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$

$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$

$=-z^5+5xyz^3-5x^2y^2z$

$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$

$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

1b.

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$

$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$

Do đó:

$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$

$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$

$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$

$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$

$=7xyz(x^2y^2-2xyz^2+z^4)$

$=7xyz(xy-z^2)$

$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$

$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$

$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)

 

 

20 tháng 5 2021

`(x+5)(y+6)=3xy`
`<=>xy+5y+6x+30=3xy`
`<=>5y+6x-2xy=-30`
`<=>2xy-6x-5y=30`
`<=>2x(y-3)-5y+15=45`
`<=>2x(y-3)-5(y-3)=45`
`<=>(y-3)(2x-5)=45`
Đến đây lập pt ước số rồi giải thui =D

8 tháng 1 2019

\(pt\Leftrightarrow\left(x^2+y^2+1\right)^2-5\left(x^2+y^2+1\right)=-y^2\)

\(\Leftrightarrow\left(x^2+y^2+1\right)\left(x^2+y^2-4\right)=-y^2\)

Gọi d là UWCLN của x2+y2+1 và x2+y2-4

\(\Rightarrow\hept{\begin{cases}x^2+y^2+1⋮d\\x^2+y^2-4⋮d\end{cases}}\Rightarrow\left(x^2+y^2+1\right)\left(x^2+y^2-4\right)⋮d^2\Rightarrow y^2⋮d^2\Rightarrow y^2⋮d\Rightarrow\hept{\begin{cases}x^2+1⋮d\\x^2-4⋮d\end{cases}}\Rightarrow5⋮d\)

\(\Rightarrow\hept{\begin{cases}x^2-5+6⋮d\\x^2+5-9⋮d\end{cases}}\Rightarrow\hept{\begin{cases}x^2+6⋮d\\x^2-9⋮d\end{cases}}\Rightarrow3⋮d\)

Do \(\left(3,5\right)=1\)

\(\Rightarrow d=1\)

\(\Rightarrow\hept{\begin{cases}x^2+y^2+1=a^2\\x^2+y^2-4=b^2\end{cases}\Rightarrow}a^2-1=b^2+4\Rightarrow a^2-b^2=5\Rightarrow\left(a-b\right)\left(a+b\right)=5\)

Sau đó lập bảng xét các ước của 5 ta tìm được a và b, sau khi tìm được a và b ta sẽ tìm được x và y

6 tháng 7 2023

5) \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2\)

\(=\left(x-y-x-y\right)^2\)

\(=\left(-2y^2\right)\)

\(=4y^2\)

6) \(\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)\)

\(=\left(x-5\right)^2-2\left(x-5\right)\left(x+5\right)+\left(x+5\right)^2\)

\(=\left[\left(x-5\right)-\left(x+5\right)\right]^2\)

\(=\left(x-5-x-5\right)^2\)

\(=\left(-10\right)^2=100\)

7) \(\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)

\(=\left(x-2\right)^2-2\left(x-2\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left[\left(x-2\right)-\left(x+1\right)\right]^2\)

\(=\left(-3\right)^2=9\)

8) \(-\left(2x+3y\right)^2+\left(2x-3y\right)^2-2\left(4x^2-9y^2\right)\)

\(=\left(2x-3y\right)^2+2\left(2x+3y\right)\left(2x-3y\right)+\left(2x+3y\right)^2\)

\(=\left[\left(2x+3y\right)+\left(2x-3y\right)\right]^2\)

\(=\left(4x\right)^2=16x^2\)

b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)

\(\Leftrightarrow-4x+3+5x+2=0\)

\(\Leftrightarrow x=-5\)