Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
\(2^{n+3}\cdot5^{n+3}=20^9\div2^9\)
`=>`\(\left(2\cdot5\right)^{n+3}=\left(20\div2\right)^9\)
`=>`\(10^{n+3}=10^9\)
`=>`\(n+3=9\)
`=> n = 9 - 3`
`=> n= 6`
Vậy, `n=6`
`b)`
\(3^{n+5}-3^{n+4}=1458\)
`=> 3^n*3^5 - 3^n*3^4 = 1458`
`=> 3^n*(3^5 - 3^4) = 1458`
`=> 3^n*162 = 1458`
`=> 3^n = 1458 \div 162`
`=> 3^n = 9`
`=> 3^n = 3^2`
`=> n=2`
Vậy, `n=2.`
`c)`
\(5^{n+3}+5^{n+2}=3750\)
`=> 5^n*5^3 + 5^n*5^2 = 3750`
`=> 5^n*(5^3+5^2) = 3750`
`=> 5^n*150 = 3750`
`=> 5^n = 3750 \div 150`
`=> 5^n =25`
`=> 5^n = 5^2`
`=> n=2`
Vậy, `n=2.`
`d)`
\(\dfrac{2}{7}x+\dfrac{3}{14}x=\dfrac{1}{2}\)
`=> 1/2x = 1/2`
`=> x = 1/2 \div 1/2`
`=> x=1`
Vậy, `x=1`
`e)`
\(\dfrac{x+2}{-3}=\dfrac{-2}{x+3}\)
`=> (x+2)(x+3) = -3*(-2)`
`=> (x+2)(x+3) = -6`
`=> x(x+3) + 2(x+3) = -6`
`=> x^2 + 3x + 2x + 6 = -6`
`=> x^2 + 5x + 6 - 6 = 0`
`=> x^2 + 5x = 0`
`=> x(x+5) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy, `x \in {0; -5}`
`@` `\text {Kaizuu lv u}`
c) Gọi ƯCLN(4n + 3;5n+4) = d
=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{4n+3}{5n+4}\)là phân số tối giản
d) Gọi ƯCLN(n+1;2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
f) Gọi ƯCLN(3n + 2;5n + 3) = d
=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+2}{5n+3}\)là phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{n+3}{n+4}\)là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+3}{9n+8}\)phân số tối giản
B) n+5/n+3
Ta có:
(n+5) - (n+3) chia hết cho n+3
=>(n-n) + (5-3) chia hết cho n+3
=> 2 chia hết cho n+3
=> n+3 là Ư(2)={1 ; 2 ; -1 ; -2}
Ta có:
*)n+3= 1
n=1-3
n= -2
*)n+3=2
n= 2 - 3
n= -1
*)n+3= -1
n= -1-3
n= -4
*)n+3= -2
n= -2 - 3
n= -5
Để tớ gửi từ từ từng câu 1 nhé
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
d) Gọi d là ƯCLN của n+1 và 2n+3, ta có:
(2n+3)-(n+1) chia hết cho d
=> (2n+3)-2(n+1) chia hết cho d
=> 2n+3-2n-2 chia hết cho d
=> 2n-2n+3-2 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy n+1/2n+3 là 2 phân số tối giản
e) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản
f) gọi d là ưcln của 3n+2 và 5n+3, ta có
(3n+2)-(5n+3) chia hết cho d
5(3n+2)-3(5n+3) chia hết cho d
15n+10-15n-9 chia hết cho d
15n-15n+10-9 chia hết cho d
1 chia hết cho d => d=1
vậy 3n+2/5n+3 là 2 phân số tối giản
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
a) 5n + 5n+2 = 650
=> 5n+5n+2=54 +52
=> n+n+2 = 4+2
=>2n +2 = 6
=> n=2
b) 3n + 5.3n= 864
=> 3n .(1+5) = 864
=> 3n = 864 :6
=> 3n =144
=> 3n =32+33+34-3
=> n=2+3+4-3=6
c ) 5n+3 - 5n+1= (125)4 . 120
=> 5n+3 - 5n+ = 512. ( 5^3 -5)
=> n+3 -n = 12.2
=> 3=14 ( vô lí )
=> không tồn tại n
Kunzy Nguyễn: Mik ko có ý chê bạn đâu nhưng mà câu a mik thấy bạn giải có chút gọi là ''sai''!