K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

30 tháng 5 2023

 Ta có n! = 1 . 2 . 3 . ... .n

nếu n>5 ⇒ n = 1 . 2 . 3 . 4 . 5 . ... .n

              ⇒n có tận cùng là 0

              ⇒n! + 47 có tận cùng = 7

mà scp không có tận cùng là 7

             ⇒n < 5

            ⇒n= 1;2;3;4

Th1 n = 1 ⇒n! = 1 ⇒n! + 47 = 48 (L)

Tương tự như vậy ta tìm được n = 2

 

 Xét 2 trường hợp : 
a) n là số nguyên 
n^2 + 2014 = k^2 (k nguyên) 
=> k^2 - n^2 = 2014 
=> (k + n)(k - n) = 2014 
nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn. 
Vậy không có n thuộc Z thỏa mãn ĐK đề bài. 

b) n là số thực 
n^2 +2014 = k^2 (k nguyên) (ĐK có nghiệm k > 44) 
=> n^2 = k^2 - 2014 => n = \(\pm\sqrt{k^2-2014}\)
Vậy có vô số số n thuộc R thỏa mãn ĐK đề bài (n = \(\pm\sqrt{k^2-2014}\) với k nguyên, k > 44) 

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ;