K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

x=1

y=2

z=3

 

17 tháng 1 2016

x= 1

y=2

z=3

tick tớ nhé nha các bạn yêu quý

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

mà 2x+y-z=0

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)

Do đó: x=3; y=2; z=8

22 tháng 12 2022

Dùng phương pháp chặn :

\(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2 

\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3  (1)

x2 + y2 + z2  = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)

Kết hợp (1) và (2) ta có : 

34/3  \(\le\) z2 \(\le\)  34 

\(\Rightarrow\) z2 \(\in\) { 16; 25}

vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}

th1 Z = 4 ta có :

x2 + y2 + 16 = 34

x2 + y2 = 12 

\(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)

x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)

Kết hợp (*) và (**) ta có :

\(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3

với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)

th2 : z = 5 ta có :

x2 + y2 + 25 = 34

\(\Rightarrow\) x2 + y2 = 34 - 25  = 9

\(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)

x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)

Kết hợp (a) và (b) ta có :

9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3

với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0

kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt 

 

14 tháng 11 2018

=y+z+t/x - n.x/x=z+t+x/y - n.y/y=t+x+y/z - n.z/z=x+y+z/t - n.t/t

=y+z+t/x - n=z+t+x/y - n=t+x+y/z - n=x+y+z/t - n

=y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t=y+z+t+z+t+x+t+x+y+x+y+z/x+y+z+t=3.(x+y+z+t)/x+y+z+t=3

ok bạn tiếp tục làm được nhé cho mih nha

27 tháng 2 2019

7a5 ddieemr danh

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$

$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$

Khi đó:

$|x+y|=|z-1|$

$\Leftrightarrow |2x|=|x-1|$

$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)

Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$