K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

dễ thôi

Cho đường tròn (O;R) đường kính AB,dây CD vuông góc với AB tại H,đường thẳng d tiếp xúc với đường tròn tại A,CO DO cắt đường thẳng d lần lượt tại M N,CM DN cắt đường tròn (O) lần lượt tại E F,Chứng minh tứ giác MNEF nội tiếp,Chứng minh ME.MC = NF.ND,Tìm vị trí của H để tứ giác AEOF là hình thoi,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

24 tháng 8 2017

Rảnh hả bạn :3

13 tháng 10 2017

\(\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}=\dfrac{x_1+x_2+...+x_{n-1}+x_n}{a_1+a_2+...+a_{n-1}+a_n}\)

\(=\dfrac{c}{a_1+a_2+...+a_n}\)

Suy ra:

\(x_1=\dfrac{a_1.c}{a_1+a_2+...+a_n}\)

\(x_2=\dfrac{a_2.c}{a_1+a_2+...+a_n}\)

.........................................

\(x_n=\dfrac{a_n.c}{a_1+a_2+...+a_n}\)

8 tháng 8 2017

Theo tính chất của dãy tỉ số bằng nha, ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

.................................

\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)

Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)

~ Học tốt ~

4 tháng 7 2017

Bài 1:

a) \(\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)......\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\)

= \(\dfrac{-8}{9}.\dfrac{-9}{10}.......\dfrac{-2003}{2004}.\dfrac{-2004}{2005}\) = \(\dfrac{-8}{2005}\)

b) \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\) = \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\)

= \(-2+\dfrac{1}{-2+\dfrac{1}{-1}}\) = \(-2+\dfrac{1}{-3}\) = \(\dfrac{-7}{3}\)

4 tháng 7 2017

\(\text{Câu 1 : }\) Tính

\(\text{a) }\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\\ =\left(1-\dfrac{9}{9}\right)\left(\dfrac{1}{10}-\dfrac{10}{10}\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-\dfrac{2005}{2005}\right)\\ =\dfrac{-8}{9}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-2003}{2004}\cdot\dfrac{-2004}{2005}\\ =\dfrac{\left(-8\right)\cdot\left(-9\right)\cdot..\cdot\left(-2003\right)\cdot\left(-2004\right)}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8\cdot9\cdot...\cdot2003\cdot2004}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8}{2005}\)

\(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-1}}\\ =-2+\dfrac{1}{-3}\\ =-2+\dfrac{-1}{3}=-\dfrac{7}{3}\)

8 tháng 11 2015

Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=k\)

=>\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{n-1}}{a_n}.\frac{a_n}{a_1}=k.k.....k.k\)

=>\(k^n=\frac{a_1.a_2.....a_{n-1}.a_n}{a_2.a_3.....a_n.a_1}\)

=>\(k^n=1=1^n\)

=>k=1

=>\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=1\)

=>\(a_1=a_2=...=a_n\)

\(=>\frac{a^2_1+a^2_2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}\)

=\(\frac{a^2_1+a^2_1+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}\)

=\(\frac{n.a^2_1}{\left(n.a_1\right)^2}=\frac{n.a_1^2}{n^2.a^2_1}=\frac{1}{n}\)

8 tháng 11 2015

thế này dc ko

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+...+a_n+a_1}\Rightarrow a_1=a_2=...=a_n\)

\(\frac{a^1_2+a^2_2+...+a^2_n}{\left(a_1+a_2+...+a_n\right)}=\frac{na^2_1}{\left(na_1\right)^2}=\frac{1}{n}\)

20 tháng 6 2017

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+....+a_n}{a_2+a_3+....+a_n+a_1}=1\)

=> a1 = a2

     a2 = a3 

    .........

     an - 1 = an

     an = a1

=> a1 = a2 = a3 = ....... = an - 1 = an

MÀ \(a_1=-\sqrt{5}\)

=>  a1 = a2 = a3 = ....... = an - 1 = an = \(-\sqrt{5}\)