Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
a) 3x + xy - y = 2
=> x(3 + y) - y = 2
=> x(3 + y) - (3 + y) = 5
=> (x - 1)(3 + y) = 5 = 1 . 5 = 5 . 1= -1 . (-5) = (-5) . (-1)
Lập bảng :
x - 1 | 1 | 5 | -1 | -5 |
3 + y | 5 | 1 | -5 | -1 |
x | 2 | 6 | 0 | -4 |
y | 2 | -2 | -8 | -4 |
Vậy ...
x y − 2 x − 2 y = 0 ⇔ x − 2 y − 2 = 4
⇒ x ; y = 3 ; 6 , 6 ; 3 , 1 ; − 2 , − 2 ; 1 , 4 ; 4 0 ; 0
x y − 2 x − 2 y = 0 ⇔ x − 2 y − 2 = 4 x ; y = 3 ; 6 , 6 ; 3 , 1 ; − 2 , − 2 ; 1 , 4 ; 4 0 ; 0
xy+2x+y+11=0xy+2x+y+11=0
⇒x.(y+2)+y+2+9=0⇒x.(y+2)+y+2+9=0
⇒(y+2).(x+1)=−9⇒(y+2).(x+1)=−9
⇒y+2⇒y+2 và x+1∈Ư(−9)x+1∈Ư(−9)
Ta xét các trường hợp sau:
TH1:{y+2=1x+1=−9⇒{y=−1x=−10TH1:{y+2=1x+1=−9⇒{y=−1x=−10
TH2:{y+2=3x+1=−3⇒{y=1x=−4TH2:{y+2=3x+1=−3⇒{y=1x=−4
TH3{y+2=9x+1=−1⇒{y=7x=−2TH3{y+2=9x+1=−1⇒{y=7x=−2
TH4:{y+2=−3x+1=3⇒{y=−5x=2TH4:{y+2=−3x+1=3⇒{y=−5x=2
Vậy (y;x)=(−1;−10);(1;4);(7;−2)(−5;2)
xy + 2x - y + 11 = 0
⇔⇔(xy + 2x) + ( - y - 2) = - 13
⇔⇔(y + 2)(x - 1) = -13
⇒⇒(y + 2, x - 1) = (1, - 13; - 13, 1; - 1, 13; 13, - 1)
⇒⇒(y, x) = (- 1, - 12; - 15, 2; - 3, 14; 11, 0)
a) \(\left(2x+3\right)\left(y-1\right)=54\)
\(\Rightarrow2x+3,y-1\inƯ\left(54\right)\)
Ta có bảng sau:
2x + 3 | 54 | 1 | -1 | -54 | 2 | -2 | 27 | -27 | -9 | 9 | 6 | -6 | 18 | -18 | -3 | 3 |
y - 1 | 1 | 54 | -54 | -1 | 27 | -27 | 2 | -2 | -6 | 6 | 9 | -9 | 3 | -3 | -18 | 18 |
x | 51/2 | -1 | -2 | -57/2 | -1/2 | -5/2 | 12 | -15 | -6 | 3 | 3/2 | -9/2 | 15/2 | -21/2 | -3 | 0 |
y | 2 | 55 | -53 | 0 | 28 | -26 | 3 | -1 | -5 | 7 | 10 | -8 | 4 | -2 | -17 | 19 |
Vậy: ...
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
\(a)xy=1\Rightarrow\orbr{\begin{cases}x=1;y=1\\x=-1;y=-1\end{cases}}\)
\(b)2x+2y-xy=6\)
\(\Rightarrow2x+y\left(2-x\right)=6\)
\(\Rightarrow2x-4+y\left(2-x\right)=6-4\)
\(\Rightarrow-2\left(2-x\right)+y\left(2-x\right)=2\)
\(\Rightarrow\left(2-x\right)\left(y-2\right)=2\)
\(+,\hept{\begin{cases}2-x=1\\y-2=2\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=4\end{cases}}}\) \(+,\hept{\begin{cases}2-x=-1\\y-2=-2\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}}\)
\(+,\hept{\begin{cases}2-x=2\\y-2=1\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\) \(+,\hept{\begin{cases}2-x=-2\\y-2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}}\)