K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2023

\(x^2+4y^2=x^2y^2-2xy\)

\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)

\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)

\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)

\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)

Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)

TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)

Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)

 

 

AH
Akai Haruma
Giáo viên
12 tháng 4 2023

Lời giải:

$3x^2+x=4y^2+y$

$\Leftrightarrow 4(y^2-x^2)+(y-x)=-x^2$

$\Leftrightarrow (y-x)[4(x+y)+1]=x^2$

$\Leftrightarrow (x-y)[4(x+y)+1]=x^2$

Gọi $d=(x-y, 4x+4y+1)$

Khi đó: $x-y\vdots d(1); 4x+4y+1\vdots d(2)$. Mà $x^2=(x-y)(4x+4y+1)$ nên $x^2\vdots d^2$
$\Rightarrow x\vdots d(3)$.

Từ $(1); (3)\Rightarrow y\vdots d$

Từ $x,y\vdots d$ và $4x+4y+1\vdots d$ suy ra $1\vdots d$

$\Rightarrow d=1$

Vậy $x-y, 4x+4y+1$ nguyên tố cùng nhau. Mà tích của chúng là scp $(x^2)$ nên bản thân mỗi số trên cũng là scp.

Đặt $4x+4y+1=t^2$ với $t$ tự nhiên.

Khi đó: $A=2xy+4(x+y)^3+x^2+y^2=(x+y)^2+4(x+y)^3=(x+y)^2[1+4(x+y)]$

$=(x+y)^2t^2=[t(x+y)]^2$ là scp

Ta có đpcm.

22 tháng 11 2023

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)

19 tháng 7 2021

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)

 

NV
12 tháng 12 2020

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)

\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)

13 tháng 12 2020

cm bn

NV
12 tháng 12 2020

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)

\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)

12 tháng 12 2020

 Nguyễn Việt Lâm anh oiiiiiiiiiii

19 tháng 3 2019

Ta có:

  x 2 +   102 =   y 2 ⇔ y 2 - x 2 = 102 N h ậ n   t h ấ y   h i ệ u   h a i   b ì n h   p h ư ơ n g   l à   m ộ t   s ố   c h ẵ n   N ê n   x , y   c ù n g   l à   s ố   c h ẵ n   h o ặ c   c ù n g   l à   s ố   l ẻ S u y   r a   y - x ;   y + x   l u ô n   l à   s ố   c h ẵ n   L ạ i   c ó   y 2 - x 2   =   102   ⇔ y - x y + x = 102 M à   y - x   v à   y + x   c ù n g   l à   s ố   c h ẵ n   S u y   r a   y - x y + x     c h i ế t   c h o   4   m à   102   k h ô n g   c h i a   h ế t   c h o   4   N ê n   k h ô n g   t ồ n   t ạ i   c ặ p   x ; y   t h ỏ a   m ã n   đ ề   b à i .                    

Đáp án cần chọn là :A

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$2x^2+y^2+2xy-6x-2y=8$

$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$

$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$

Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại) 

Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)

Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$

$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$

TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$

TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$

TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$

Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)

28 tháng 10 2023

scp là gì vậy bạn