Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; (n + 4) \(⋮\) ( n - 1) đk n ≠ 1
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -4; 0; 2; 6}
Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1
n2 + 2n + 1 - 4 ⋮ n + 1
(n + 1)2 - 4 ⋮ n + 1
4 ⋮ n + 1
n + 1 \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
n \(\in\) {-5; -3; -2; 0; 1; 3}
(3n+2):(n-1) = 3 + 5/(n-1)
a)Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
c)3n+2 chia hết cho 2n-1
6n-3n+2 chia hết cho 2n-1
3(2n-1)+2 chia hết cho 2n-1
=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}
=>2n thuộc{2;0;3;-1}
=>n thuộc{1;0}
Cristiano Ronaldoĩ 17/05/2015 lúc 10:21
Báo cáo sai phạm
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì
a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì
a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4
a) Để một số chia hết cho 100 thì số đó phải có 2 chữ số tận cùng là 0
\(5^4=5^2\cdot5^2=25\cdot25\)có tận cùng là 25
Nên \(5^4+375\)có tận cùng là 2 chữ số 0
\(\Rightarrow5^4+375⋮100\)
b) \(2001^n+2^{3n}\cdot47^n+25^{2n}\)
Xét : \(2001^n\)có tận cùng là 1 nên lũy thừa với số mũ bao nhiêu đều có tận cùng là 1
\(2^{3n}\cdot47^n=\left(2^3\right)^n\cdot47^n=8^n\cdot47^n=376^n\)
\(25^{2n}=\left(25^2\right)^n=625^n\)
\(376^n\)và \(625^n\)có chữ số tận cùng là 6 và 5 nên lũy thừa với số mũ bao nhiêu cũng sẽ có tận cùng là 6 hoặc 5
\(\Rightarrow2001^n+376^n+625^n\)có tận cùng là 2
a=(3^(n+2)+3^n)+(2^(n+2)+2^n)
a=3^n(9+1)+2^(n-1)x2x(4+1)
a=3^n x10 +2^(n-1)x10
a=10(3^n+2^(n-1)
vì n thuộc N*=>n-1>=0=>2^(n-1) thuộc N
=>3^n thuộc N
=> 3^n+2^(n-1) là số tự nhiên
=> a tận cùng là 0
bn có thể bỏ phần vì n.....đến hết đi vì một số nhân với 10 tận cùng sẽ là o