Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
M − 3 x y − 4 y 2 = x 2 − 7 x y + 8 y 2 ⇒ M = x 2 − 7 x y + 8 y 2 + 3 x y − 4 y 2 ⇒ M = x 2 + ( − 7 x y + 3 x y ) + 8 y 2 − 4 y 2 ⇒ A = 13 x 2 y + 3 y 3 − 10 x y 2
Chọn đáp án B
Các nhóm đơn thức đồng dạng là:
Vì nhóm 1 có phần biến chung là: x2y, nhóm 2 có phần biến chung là: xy2
Còn lại đơn thức xy (có phần biến là xy) không đồng dạng với các đơn thức nào đã cho.
\(\text{P= ax⁴y³ +10xy² +4y³ -2x⁴y³ -3xy²+bx³y⁴}\)
\(\text{P=}\text{ax⁴y³-2x⁴y³ +bx³y⁴ +10xy² -3xy² +4y³}\)
\(\text{P=}\text{(a-2)x⁴y³ + bx³y⁴ +(10-3)xy² +4y³}\)
\(\text{P=}\text{ (a-2)x⁴y³ + bx³y⁴ +7xy² +4y³}\)
\(\text{Để P có bậc 3 thì:}\)
\(a-2=0\Leftrightarrow a=2\)
\(b=0\Leftrightarrow b=0\)
\(\text{Vậy a=2,b=0 thì P có bậc là 3}\)
Gọi A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3
Trước hết ta thu gọn đa thức :
A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3
= (– 3x3+ 3x3) + x2 + 2xy + (2y3– y3)
= 0 + x2 + 2xy + y3.
= x2 + 2xy + y3.
Thay x = 5 ; y = 4 vào A ta được :
A = 52+ 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị biểu thức x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 ; y = 4 bằng 129.
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.
Trước hết ta thu gọn đa thức
A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3
Thay x = 5; y = 4 ta được:
A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy A = 129 tại x = 5 và y = 4.
b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.
Thay x = -1; y = -1 vào biểu thức ta được:
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
a, x2 + 2xy - 3x3 + 2y3 + 3x3 - y3
= (-3x3 + 3x3)+(2y3 - y3)+ x2 + 2xy
= -1y3 + x2 + 2xy
thay x = 5 va y = 4 vao da thuc x2 + 2xy - 3x3 + 2y3 + 3x3 - y3
ta co:5.2 + 2.5.4 - 3.5.3 + 2.4.3 + 3.5.3 - 4.3
= 10 + 40 - 45 + 24 + 45 - 12
= 62
a) \(A+B=15x^2y-7xy^2-6y^3+2x^3-12x^2y+7xy^2=2x^3+3x^2y-6y^3\)
\(A-B=15x^2y-7xy^2-6y^3-2x^3+12x^2y-7xy^2=-2x^3-6y^3+27x^2y-14xy^2\)
A+B = \(13x^2y-6y^3+2x^3\)
A-B = \(27x^2y-6y^3-2x^3\)
\(A+B=13x^2y-6y^3+2x^3\) tại x=1 ,y=3
\(A+B=13.1^2\)\(.3\) - \(6.3^3\)+\(2.1^3\)
A+B = 13.1.3 - 6.27 + 2.1
A+B = 39 - 162 + 2
A+B= -128
A-B = \(27.1^2.3-6.3^3-2.1^3\)
A-B = 27.1.3 - 6.27-2.1
A-B = 81 - 162 - 2
A-B = -83
2,
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
3,
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
4,
a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3
= x2+2xy+(-3x3+3x3)+2y3-y3
=x2+2xy+2y3-y3
Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:
52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129
b,
Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1
5,
a, C=A+B
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = 2x2 – y + xy - x2y2
b) C + A = B => C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = - x2y2 - xy + 3y - 2.
\(A=12x^2y-2y^3+25x^2y-10xy^2+y^3=37x^2y-10xy^2-y^3\)
\(A=\left(12x^2y-2y^3\right)+\left(25x^2y-10xy^2+y^3\right)\)
\(A=37x^2y-10xy^2-y^3\)