Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{\left(x+2\right)P}{x-2}=\dfrac{\left(x-1\right)Q}{x^2-4}\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)P=\left(x-2\right)\left(x-1\right)Q\)
\(\Leftrightarrow\)\(\left(x+2\right)^2\left(x-2\right)P=\left(x-2\right)\left(x-1\right)Q\)
\(\Leftrightarrow\)\(\left(x+2\right)^2P=\left(x-1\right)Q\)
\(\Leftrightarrow P=x-1\)
\(Q=\left(x+2\right)^2=x^2+4x+4\)
b)\(\dfrac{\left(x+2\right)P}{x^2-1}=\dfrac{\left(x-2\right)Q}{x^2-2x+1}\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)P=\left(x+1\right)\left(x-1\right)\left(x-2\right)Q\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)P=\left(x+1\right)\left(x-2\right)Q\)
\(\Leftrightarrow P=\left(x+1\right)\left(x-2\right)=x^2-x-2\)
\(Q=\left(x-1\right)\left(x+2\right)=x^2+x-2\)
Bài 1:
a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$
$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$
b.
$(x+1)(x+2)(x+3)(x+4)-24$
$=[(x+1)(x+4)][(x+2)(x+3)]-24$
$=(x^2+5x+4)(x^2+5x+6)-24$
$=a(a+2)-24$ (đặt $x^2+5x+4=a$)
$=a^2+2a-24=(a^2-4a)+(6a-24)$
$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$
$=x(x+5)(x^2+5x+10)$
Bài 2:
a. ĐKXĐ: $x\neq 3; 4$
\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)
b. $x^2+20=9x$
$\Leftrightarrow x^2-9x+20=0$
$\Leftrightarrow (x-4)(x-5)=0$
$\Rightarrow x=5$ (do $x\neq 4$)
Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$
a, \(\dfrac{4\left(x-3\right)^2-\left(2x-1\right)^2-12x}{12}< 0\)
\(\Rightarrow4\left(x^2-6x+9\right)-4x^2+4x-1-12x< 0\)
\(\Leftrightarrow-32x+35< 0\Leftrightarrow x>\dfrac{35}{32}\)
b, \(\dfrac{24+12\left(x+1\right)-36+3\left(x-1\right)}{12}< 0\)
\(\Rightarrow-12x+15x+9< 0\Leftrightarrow3x< -9\Leftrightarrow x>-3\)
a: ĐKXĐ: x<>1; x<>-1
\(A=\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x-1}\)
\(=\dfrac{x+1}{x-1}-\dfrac{1}{x-1}=\dfrac{x}{x-1}\)
b: x^2+3x+2=0
=>x=-1(loại) hoặc x=-2(nhận)
Khi x=-2 thì A=-2/(-3)=2/3
ý mình là vì sao được kết quả đó , giải thích ra giúp mình nha
a)\(\dfrac{x+5}{3x-2}=\dfrac{x\left(x+5\right)}{x\left(3x-2\right)}\) b)\(\dfrac{2x-1}{4}=\dfrac{\left(2x-1\right)\left(2x+1\right)}{8x+4}\) c)\(\dfrac{2x\left(x-2\right)}{x^2-4x+4}=\dfrac{2x}{x-2}\) d) \(\dfrac{5x^2+10x}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{x-2}\)
a) Ta có: \(A=\left(\dfrac{2}{x+2}-\dfrac{1}{x-3}+\dfrac{5-x}{x^2-x-6}\right)\cdot\left(x-\dfrac{6}{x-1}\right)\)
\(=\left(\dfrac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}-\dfrac{x+2}{\left(x-3\right)\left(x+2\right)}+\dfrac{5-x}{\left(x-3\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-1\right)-6}{x-1}\)
\(=\dfrac{2x-6-x-2+5-x}{\left(x+2\right)\left(x-3\right)}\cdot\dfrac{x^2-x-6}{x-1}\)
\(=\dfrac{-3}{x-1}\)
\(\Leftrightarrow\dfrac{x+1}{\left(x-3\right)\left(x+2\right)\cdot B}=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)
\(\Leftrightarrow B=\dfrac{x-1}{\left(x-3\right)\left(x+2\right)}\)