Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Gọi đa thức dư là A(x)
Vì đa thức dư P(x) có bậc là 3
nên đa thức dư có bậc không quá 2
hay đa thức dư có dạng là \(ax^2+bx+c\)
Ta có: Q(x)=\(A\left(x\right)\cdot\left(x-1\right)\cdot x\cdot\left(x+1\right)+ax^2+bx+c\)
Với x=1 thì a+b+c=6(1)
Với x=-1 thì a-b+c=-4(2)
Với x=0 thì c=1
Thay c=1 vào (1), (2), ta được:
a+b=5 và a-b=-5
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\5-b-b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\-2b=-5-5=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-5=0\\b=5\end{matrix}\right.\)
Vậy: đa thức dư có dạng là 5x+1
b) Để Q(x) chia hết cho P(x) thì 5x+1=0
\(\Leftrightarrow5x=-1\)
hay \(x=-\dfrac{1}{5}\)
Gọi (x^54 + x^45 +......+ x^9 + 1) =f(x)
Đặt f(x) = (x^2 -1 )* Q(x) +R(x)
Do đa thức có bậc không quá 2 nên đa thức dư có bậc không quá 1 nên đặt R(x) = ax +b
Thay vào ta có (x^54 + x^45 +x^36+......+x^9+1) = x^2 -1* Q(x) +ax+b
Lần lượt gán x=1 và x= -1 ta có
F(1) = ( 1^54+1^45+.....,,+1^9+1)= 1^2-1 *Q(x) +a*1+ b
=> 7 = a+b
Tương tự gán x =-1 ta dược 1= b-a
=> b= 7+1/2 =4
a= 7-4=3
Do đó dư là 3x +4
b)\(\frac{9x^4-6x^3+15x^2+2x+1}{3x^2-2x+5}=\frac{3x^2.\left(3x^2-2x+5\right)+2x+1}{3x^2-2x+5}=3x^2+\frac{2x+1}{3x^2-2x+5}\)
=> đa thức dư trong phép chia là 2x+1
\(\frac{x^3+2x^2-3x+9}{x+3}=\frac{x^3+9x^2+27x+27-7x^2-30x-18}{x+3}=\frac{\left(x+3\right)^3-7x^2-30x-18}{x+3}\)
\(\left(x+3\right)^2-\frac{7x^2+21x+9x+18}{x+3}=\left(x+3\right)^2-\frac{7x.\left(x+3\right)+9.\left(x+3\right)-9}{x+3}\)
\(=\left(x+3\right)^2-\frac{\left(7x+9\right).\left(x+3\right)-9}{x+3}=\left(x+3\right)^2-\left(7x+9\right)-\frac{9}{x+3}\)
=> đa thức dư trong phép chia là 9
p/s: t mới lớp 7_sai sót mong bỏ qua :>
Tú mà không làm được câu này á :))
( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8
= [ ( x - 6 )( x - 9 ) ][ ( x - 7 )( x - 8 ) ] - 8
= ( x2 - 15x + 54 )( x2 - 15x + 56 ) - 8 (*)
Đặt t = x2 - 15x + 54
(*) <=> t( t + 2 ) - 8
= t2 + 2t - 8
= ( t - 2 )( t + 4 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 )
=> [ ( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8 ] : ( x2 - 15x + 100 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 ) : ( x2 - 15x + 100 )
Đặt y = x2 - 15x + 100
Ta có được phép chia ( y - 48 )( y - 42 ) : y
= y2 - 90y + 2016 : y
= [ ( x2 - 15x + 100 )2 - 90( x2 - 15x + 100 ) + 2016 ] : ( x2 - 15x + 100 )
Đến đây thì quá dễ rồi :)) dư 2016 nhá
Vì đa thức chia có bậc 2 nên bậc của đa thức dư không vượt quá 1 .
Ta có :
\(\left(x^{54}+x^{45}+...+x^9+1\right)\)
\(=\left(x^2-1\right).Q+\left(ax+b\right)\)
Lần lượt ta có giá trị riêng là :
\(x=1;x=-1\)
\(\Rightarrow\hept{\begin{cases}7=a+b\\1=-a+b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=3\\b=4\end{cases}}\)
Vậy đa thức dư cần tìm là : \(3x+4\)
Do bậc của số chia là 2 nên số dư sẽ có dạng \(ax+b\)
Đặt \(x^{54}+x^{45}+...+x^9+1=\left(x^2-1\right).G\left(x\right)+ax+b\) với \(G\left(x\right)\) là đa thức thương
Thay \(x=1\) vào đẳng thức trên ta được : \(1+1+1...+1+1=a+b\Leftrightarrow a+b=7\) (1)
Thay \(x=-1\) vào đẳng thức trên ta được :\(1-1+1-1+...-1+1=-a+b\Leftrightarrow-a+b=1\)(2)
Cộng \(\left(1\right);\left(2\right)\) ta được \(2b=8\Rightarrow b=4\Rightarrow a=7-b=7-4=3\)
Vậy số dư của phép chia trên là \(3x+4\)