K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

2,

M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y

= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3

= 2x2 + 4xyz - y +2.

M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)

= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y

= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3

= -8x2 + 2xyz + 10xy + y - 4.

N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)

= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1

= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1

= 8x2 - 2xyz - 10xy - y + 4.

3,

a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1

P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)

P = x2 – y2 + 3y2 – 1 - x2 + 2y2

P = x2 – x2 – y2 + 3y2 + 2y2 – 1

P = 4y2 – 1.

Vậy P = 4y2 – 1.

b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5

Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)

Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz

Q = 7x2 – 4xyz + xy + 5

Vậy Q = 7x2 – 4xyz + xy + 5.

4,

a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3

= x2+2xy+(-3x3+3x3)+2y3-y3

=x2+2xy+2y3-y3

Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:

52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129

b,

Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.

Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1

5,

a, C=A+B

C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1

C = 2x2 – y + xy - x2y2

b) C + A = B => C = B - A

C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)

C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1

C = - x2y2 - xy + 3y - 2.


16 tháng 3 2017

dễ mà , có khó đâu bạn

28 tháng 9 2018

Ta có

Trắc nghiệm: Cộng, trừ đa thức - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Chọn đáp án C

14 tháng 7 2017

Ta có

Trắc nghiệm: Cộng, trừ đa thức - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Chọn đáp án D

6 tháng 3 2017

Ta có

C − A − B = − x 2 + 3 x y + 2 y 2 − 4 x 2 − 5 x y + 3 y 2 − 3 x 2 + 2 x y + y 2 = − x 2 + 3 x y + 2 y 2 − 4 x 2 + 5 x y − 3 y 2 − 3 x 2 − 2 x y − y 2 = − x 2 − 4 x 2 − 3 x 2 + ( 3 x y + 5 x y − 2 x y ) + 2 y 2 − 3 y 2 − y 2 = − 8 x 2 + 6 x y − 2 y 2

Chọn đáp án B

27 tháng 2 2018

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B

(Nghỉ dịch từ ngày 28/2/2022)Bài 1:a) Cho hai đa thức:   M = 2x2 – 2xy – 3y2 + 1;     N = x2 – 2xy + 3y2 – 1Tính M + N; M – N.b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5+ Tính P(x) + Q(x)+ Tính P(x) - Q(x)Bài 2: Tìm x biết:a) (x - 8 )( x3+ 8) = 0;               b) (4x - 3) – ( x + 5) = 3(10 - x)Bài 3: Cho đa thức:   P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của...
Đọc tiếp

(Nghỉ dịch từ ngày 28/2/2022)

Bài 1:

a) Cho hai đa thức:   M = 2x2 – 2xy – 3y2 + 1;     N = x2 – 2xy + 3y2 – 1

Tính M + N; M – N.

b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5

+ Tính P(x) + Q(x)

+ Tính P(x) - Q(x)

Bài 2: Tìm x biết:

a) (x - 8 )( x3+ 8) = 0;               b) (4x - 3) – ( x + 5) = 3(10 - x)

Bài 3: Cho đa thức:   P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.

a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.

b) Tính P(1) và P(–1).

Bài 4:  Tính nhanh (nếu có thể):

 

Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.

b) Chứng minh AM vuông góc với BC.

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.

a) Chứng minh: HB = HC.

b) Tính độ dài AH.

c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).

Chứng minh ΔHDE cân.

d) So sánh HD và HC.

1

Bài 2:

a: \(\left(x-8\right)\left(x^3+8\right)=0\)

=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

=>\(4x-3-x-5=30-3x\)

=>3x-8=30-3x

=>6x=38

=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)

Bài 6:

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

b: Ta có: HB=HC

H nằm giữa B và C

Do đó: H là trung điểm của BC

=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-4^2=9\)

=>\(AH=\sqrt{9}=3\left(cm\right)\)

c: Ta có: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)

Do đó:HD<HC

9 tháng 5 2022

`x^2-2y^2+2/3x^2y^3+B=2x^2+y^2+2/3x^2y^3`

`=>B=2x^2+y^2+2/3x^2y^3-x^2+2y^2-2/3x^2y^3`

`=>B=(2x^2-x^2)+(y^2+2y^2)+(2/3x^2y^3-2/3x^2y^3)`

`=>B=x^2+3y^2`

Thay `x=1 ; y=[-1]/3` vào `B` có:

   `B=1^2+3.([-1]/3)^2=1+3 . 1/9=1+1/3=4/3`

9 tháng 5 2022

`x^2 - 2y^2 + 2/3x^2y^3 + B = 2x^2 + y^2 + 2/3x^2y^3`

`=> B  = 2x^2 + y^2 + 2/3x^2y^3` `- (x^2 - 2y^2 + 2/3x^2y^3)`

         `= 2x^2 + y^2 + 2/3x^2y^3 - x^2 + 2y^2 - 2/3x^2y^3`

         `= ( 2x^2 - x^2 ) + ( y^2 + 2y^2 ) + ( 2/3x^2y^3 - 2/3x^2y^3 )`

         `= x^2 + 3y^2`

Thay `x=1 ; y=-1/3` vào `B` ta có `:`

`B = 1^2 + 3 . ( -1/3 )^2`

   `= 1 + 1/3`

   `= 4/3` 

30 tháng 1 2017

5 tháng 6 2018

17 tháng 4 2017

Có hai cách trình bày với bài này: một là bạn có thể liệt kê hết các phần tử ra hoặc bạn sắp xếp theo cùng thứ tự và tính như sau: