Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé
Đặt h(x) = x4 + a.x3 + b.x2 + c.x + d
h(1) = 1 => 1 + a + b + c + d = 2
Tương tự với h(2), h(4),... ta được 4 phương trình bậc một 4 ẩn, dễ dàng giải ra kết quả.
xét g(x)=x2+1 có g(1)=2; g(2)=5; g(4)=17; g(-3)=10
ta có f(x)=h(x)-g(x)thì f(x) bậc 4 của hệ số x4 là 1 và f(1)=f(2)=f(4)=f(-3)
=> f(x)=(x-1)(x-2)(x-4)(x+3)
=> f(x)=(x2-3x+2)(x2-x-12)=x4-4x3-7x2+34x-24
=> h(x)=x4-4x3-6x2+34x-25
Vì \(P\left(x\right)⋮\left(2x-1\right)\) \(\Rightarrow P\left(\dfrac{1}{2}\right)=0\)
Xét đa thức \(Q\left(x\right)=P\left(x\right)-\left(x+1\right)\). Ta có \(Q\left(1\right)=Q\left(2\right)=Q\left(3\right)=Q\left(4\right)=0\) nên \(Q\left(x\right)\) có 4 nghiệm là \(1,2,3,4\). Nếu \(Q\left(x\right)\equiv0\) thì \(P\left(x\right)=x+1\), vô lý. Do đó \(Q\left(x\right)\) là đa thức khác hằng \(\Rightarrow\) bậc của \(Q\left(x\right)\) phải lớn hơn hoặc bằng 4. Mà \(P\left(x\right)\) có hệ số cao nhất là 1 \(\Rightarrow\) \(Q\left(x\right)\) cũng phải có hệ số cao nhất là 1.
Mặt khác, \(Q\left(\dfrac{1}{2}\right)=P\left(\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+1\right)=-\dfrac{3}{2}\)
Đặt \(Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)R\left(x\right)\). Khi đó \(R\left(x\right)\) có hệ số cao nhất là 1 và \(R\left(\dfrac{1}{2}\right)=-\dfrac{8}{35}\).
Khi đó, ycbt \(\Leftrightarrow\) tìm tất cả các đa thức \(R\left(x\right)\) có hệ số cao nhất là 1 mà \(R\left(\dfrac{1}{2}\right)=-\dfrac{8}{35}\).
Nếu \(R\left(x\right)=-\dfrac{8}{35}\) thì vô lý.
Nếu \(R\left(x\right)\) có bậc là 1 thì \(R\left(x\right)=x+a\). Thế \(x=\dfrac{1}{2}\) sẽ tìm được \(a=-\dfrac{51}{70}\) và do đó \(R\left(x\right)=x-\dfrac{51}{70}\) \(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-\dfrac{51}{70}\right)\). Thế vào \(Q\left(x\right)=P\left(x\right)-\left(x+1\right)\) ta tìm được đa thức \(P\left(x\right)\) thỏa ycbt.
Nếu \(R\left(x\right)\) có bậc 2 thì \(R\left(x\right)=x^2+ax+b\). Thế \(x=\dfrac{1}{2}\) thì ta có \(\dfrac{1}{2}a+b=-\dfrac{1}{2}\), sẽ có vô số cặp số \(\left(a,b\right)\) thỏa mãn điều này \(\Rightarrow\) tồn tại vô số đa thức \(Q\left(x\right)\) \(\Rightarrow\) tồn tại vô số đa thức \(P\left(x\right)\) thỏa ycbt.
Tương tự như thế, ta xét bậc của \(R\left(x\right)\) tăng dần thì sẽ có vô số đa thức \(P\left(x\right)\) thỏa mãn ycbt. (nhưng sẽ không có công thức chung cho các đa thức)
Vì �(�)⋮(2�−1)P(x)⋮(2x−1) ⇒�(12)=0⇒P(21)=0
Xét đa thức �(�)=�(�)−(�+1)Q(x)=P(x)−(x+1). Ta có �(1)=�(2)=�(3)=�(4)=0Q(1)=Q(2)=Q(3)=Q(4)=0 nên �(�)Q(x) có 4 nghiệm là 1,2,3,41,2,3,4. Nếu �(�)≡0Q(x)≡0 thì �(�)=�+1P(x)=x+1, vô lý. Do đó �(�)Q(x) là đa thức khác hằng ⇒⇒ bậc của �(�)Q(x) phải lớn hơn hoặc bằng 4. Mà �(�)P(x) có hệ số cao nhất là 1 ⇒⇒ �(�)Q(x) cũng phải có hệ số cao nhất là 1.
Mặt khác, �(12)=�(12)−(12+1)=−32Q(21)=P(21)−(21+1)=−23
Đặt �(�)=(�−1)(�−2)(�−3)(�−4)�(�)Q(x)=(x−1)(x−2)(x−3)(x−4)R(x). Khi đó �(�)R(x) có hệ số cao nhất là 1 và �(12)=−835R(21)=−358.
Khi đó, ycbt ⇔⇔ tìm tất cả các đa thức �(�)R(x) có hệ số cao nhất là 1 mà �(12)=−835R(21)=−358.
Nếu �(�)=−835R(x)=−358 thì vô lý.
Nếu �(�)R(x) có bậc là 1 thì �(�)=�+�R(x)=x+a. Thế �=12x=21 sẽ tìm được �=−5170a=−7051 và do đó �(�)=�−5170R(x)=x−7051 ⇒�(�)=(�−1)(�−2)(�−3)(�−4)(�−5170)⇒Q(x)=(x−1)(x−2)(x−3)(x−4)(x−7051). Thế vào �(�)=�(�)−(�+1)Q(x)=P(x)−(x+1) ta tìm được đa thức �(�)P(x) thỏa ycbt.
Nếu �(�)R(x) có bậc 2 thì �(�)=�2+��+�R(x)=x2+ax+b. Thế �=12x=21 thì ta có 12�+�=−1221a+b=−21, sẽ có vô số cặp số (�,�)(a,b) thỏa mãn điều này ⇒⇒ tồn tại vô số đa thức �(�)Q(x) ⇒⇒ tồn tại vô số đa thức �(�)P(x) thỏa ycbt.
Tương tự như thế, ta xét bậc của �(�)R(x) tăng dần thì sẽ có vô số đa thức �(�)P(x) thỏa mãn ycbt. (nhưng sẽ không có công thức chung cho các đa thức)