K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2021

có hai cái nhé một cái ở câu hỏi và đề bài(dễ vc OK)

9 tháng 4 2021

2 dấu + nha

25 tháng 4 2017

Chọn D

2 tháng 12 2018

Chọn C.

12 tháng 12 2018

11 tháng 12 2019

Chọn D

Hàm số có 2 điểm cực trị x1; x2 ⇔ Δ' > 0 ⇔ 4 - (m + 2) > 0 ⇔ m < 2

 

Chia y cho y’ ta được : 

Suy ra : Phương trình đường thẳng đi qua hai điểm cực trị là: y = (m - 2)(2x + 1).

Điểm cực trị tương ứng : A(x1;(m - 2)(2x1 + 1)) và B(x2;(m - 2)(2x2 + 1))

Có: 

24 tháng 8 2016

ta co y'=6x2-6(2m+1)x+6m(m+1). de co 2 diem cuc tri trai dau thi y'=0 co 2no fb                              <=>Δ'>0                                                                                                                                  P<O                                                                                                            theo vi-et: x1.x2=m(m+1)                                                                                              <=>Δ'=9>0(dung)                                                                                                                  m(m+1)<0<=>-1<m<0

30 tháng 3 2018

Chọn D

Hàm số có 2 điểm cực trị  x 1 , x 2

Chia y cho y’ ta được :

Điểm cực trị tương ứng :

Với x 1 + x 2 = 4 x 1 x 2 = m + 2 nên  y 1 y 2 = ( m - 2 ) 2 ( 4 m + 17 )

Hai cực trị cùng dấu  ⇔ y 1 y 2 > 0

Kết hợp đk :  - 17 4 < m < 2

24 tháng 2 2018

Đáp án C

Phương pháp:

+) Tính y’, giải phương trình y' = 0 ⇒ các cực trị của hàm số.

+) Tính các giá trị cực trị của hàm số và yCT.y < 0

Cách giải:

Giá trị cực đại và giá trị cực tiểu trái dấu ⇒ (-2 + m)(2 + m) < 0 ⇔ -2 < m < 2

24 tháng 3 2016

\(\begin{cases}x^2+2\left|xy\right|-5x+m=0\left(1\right)\\x-y=\sin\left|x\right|-\sin\left|y\right|\left(2\right)\end{cases}\)

Biến đổi (2) về dạng : \(x-\sin\left|x\right|=y-\sin\left|y\right|\)

                                      \(\Leftrightarrow f\left(x\right)=f\left(y\right)\)  (*)

Xét hàm số \(f\left(t\right)=t-\sin\left|t\right|\)

- Miền xác định D=R

- Đạo hàm \(f'\left(t\right)=\begin{cases}1-\cot\left(t>0\right)\\1+\cot\left(t<0\right)\end{cases}\)

Suy ra  \(f'\left(t\right)\ge0\) với mọi \(t\ne0\Leftrightarrow\) Hàm số đồng biến

Từ (*) \(\Leftrightarrow x=y\) Thay vào (1) ta có : \(3x^2-5x+m=0\)  (**)

Để hệ có hai nghiệm với tung độ trái dấu \(\Leftrightarrow\)  phương trình (**) có 2 nghiệm trái dấu \(\Leftrightarrow P<0\Leftrightarrow m<0\)