Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1
\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)
\(\Rightarrow\)n\(\ne\)11k+1:2
a) Để \(\dfrac{3n+4}{n-1}\) tối giản thì n không phải là giá trị sao cho \(\left(3n+4\right)⋮\left(n-1\right)\)
\(\left(3n+4\right)⋮\left(n-1\right)\Leftrightarrow\left(3n+4\right)-3\left(n-1\right)⋮\left(n-1\right)\)
\(\Leftrightarrow7⋮\left(n-1\right)\Rightarrow\left(n-1\right)\inƯ\left(7\right)\) (đoạn này tự lập bảng và kết luận)
b) Tương tự như câu a)
Mk giải theo cách mk hiểu chứ ko phải chặt chẽ lắm đâu nha !!!
Với \(k\inℕ\)thì \(k\)có thể bằng \(0\)
\(\Rightarrow kn\)có thể bằng \(0\)
\(\Rightarrow\frac{m}{kn+m}=\frac{m}{0+m}=\frac{m}{m}=1\)
\(\Rightarrow\frac{m}{kn+m}\)ko phải phân số tối giản
Vậy để \(\frac{m}{kn+m}\)là phân số tối giản thì \(k\inℕ^∗\)
Chắc vậy !!!
gọi ước chung lớn nhất của 2n+1 và 3n+1 là d (d thuộc N*)
=> 2n+1 chia hết cho d (1) , 3n+1 chia hết cho d (2)
Từ (1) => 3.(2n+1) chia hết cho d => 6n+3 chia hết cho d (3)
Từ (2) => 2( 3n+1) chia hết cho d => 6n+2 chia hết cho d (4)
Từ (3) và (4) =>( 6n+3) -(6n+2) chia hết cho d
=> 1chia hết cho d (5)
Mà d thuộc N* (6)
Từ (5) và (6) => d=1
Vậy ƯCLN ( 2n+1,3n+1) =1
=> ĐCCM
Đặt d là ước nguyên tố của 2n - 1 và 9n + 4
=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d
2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d
9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d
=>( 18n + 8 ) - ( 18n - 9 ) chia hết cho d
=>18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d => d thuộc ước của 17 mà ước của 17 là 1;17
Giúp mình với