K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: \(x\notin\left\{0;1\right\}\)

b: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

5 tháng 1 2022

\(a,ĐK:x\ne0;x-1\ne0\Leftrightarrow x\ne0;x\ne1\\ b,ĐK:x^2-4=\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow x\ne2;x\ne-2\)

25 tháng 2 2021

`a,ĐKXĐ:x-4 ne 0,2x+2 ne 0`

`<=>x ne 4,x me -1`

`b,ĐKXĐ:4x^2-25 ne 0`

`<=>(2x-5)(2x+5) ne 0`

`<=>x ne +-5/2`

`c,ĐKXĐ:8x^3+27 ne 0`

`<=>8x^3 ne -27`

`<=>2x ne -3`

`<=>x ne -3/2`

`d,2x+2 ne 0,4y^2-9 ne 0`

`<=>2x ne -2,(2y-3)(2y+3) ne 0`

`<=>x ne -1,y ne +-3/2`

b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{3}{2}\)

d) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\notin\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\end{matrix}\right.\)

\(A=\dfrac{x^2-y^2+2y^2}{y\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\dfrac{2x^2+2-2x^2+x}{2\left(2x-1\right)}\cdot\dfrac{-\left(2x-1\right)}{x+2}\)

\(=\dfrac{-1}{y}+\dfrac{-1}{2}=\dfrac{-2-y}{2y}\)

4 tháng 5 2017

a)

Gía trị phân thức A được xác định khi 2 (x - 1) - 3 (2x + 1) \(\ne0\)

=> Nếu tìm được x khi phân thức A = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức A được xác định.

Ta có phương trình:

2 (x - 1) - 3 (2x + 1) \(=0\)

hay 2x - 2 - 6x - 3 = -4x - 5 = 0

=> x = (0 + 5) : (-4) = \(\dfrac{-5}{4}\)

Vậy x \(\ne\dfrac{-5}{4}\) thì giá trị phân thức A
được xác định.

b) \(B=\dfrac{0,5\left(x+3\right)-2}{1,2\left(x+0,7\right)-4\left(0,6x+0,9\right)}\)

Gía trị phân thức B được xác định khi 1,2 (x + 0,7) - 4 (0,6x + 0,9) \(\ne\) 0

=> Nếu tìm được x khi phân thức B = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức B được xác định.

Ta có phương trình:

1,2 (x + 0,7) - 4 (0,6x + 0,9) = 0

hay 1,2x + 0,84 - 2,4x - 3,6 = -1,2x - 2,76 = 0

=> x = (0 + 2,76) : (-1,2) = \(\dfrac{-23}{10}=-2,3\)

Vậy x \(\ne0\) thì giá trị phân thức B
được xác định.

4 tháng 5 2017

Sửa lại:

a) \(A=\dfrac{3x+2}{2\left(x-1\right)-3\left(2x+1\right)}\)

Gía trị phân thức A được xác định khi 2 (x - 1) - 3 (2x + 1) ≠0

=> Nếu tìm được x khi phân thức A = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức A được xác định.

Ta có phương trình:

2 (x - 1) - 3 (2x + 1) =0

hay 2x - 2 - 6x - 3 = -4x - 5 = 0

=> x = (0 + 5) : (-4) = \(\dfrac{-5}{4}=-1,25\)

Vậy x ≠ \(-1,25\) thì giá trị phân thức A được xác định.

b) \(B=\dfrac{0,5\left(x+3\right)-2}{1,2\left(x+0,7\right)-4\left(0,6x+0,9\right)}\)

Gía trị phân thức B được xác định khi 1,2 (x + 0,7) - 4 (0,6x + 0,9) ≠ 0

=> Nếu tìm được x khi phân thức B = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức B được xác định.

Ta có phương trình:

1,2 (x + 0,7) - 4 (0,6x + 0,9) = 0

hay 1,2x + 0,84 - 2,4x - 3,6 = -1,2x - 2,76 = 0

=> x = (0 + 2,76) : (-1,2) = \(\dfrac{-23}{10}\)=−2,3

Vậy x ≠ -2,3 thì giá trị phân thức B được xác định.

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

17 tháng 4 2022

B1: ĐXXĐ: \(x\ne\pm2;x\ne-1\)

\(=\left(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\left(\dfrac{x-2-2x-2+x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}.\dfrac{\left(x-2\right)\left(x+1\right)}{-6\left(x+2\right)}=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}\)

b, \(A=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}>0\)

\(\Leftrightarrow2x+2>0\) (vì \(3\left(x+2\right)^2\ge0\forall x\))

\(\Leftrightarrow x>-1\).

-Vậy \(x\in\left\{x\in Rlx>-1;x\ne2\right\}\) thì \(A>0\).

 

3 tháng 10 2021

\(a,A=\dfrac{x+1+2-2x+5-x}{\left(1-x\right)\left(x+1\right)}\cdot\dfrac{\left(1-x\right)\left(x+1\right)}{2x-1}\left(x\ne1;x\ne-1;x\ne\dfrac{1}{2}\right)\\ A=\dfrac{8-2x}{2x-1}\\ b,A>0\Leftrightarrow\dfrac{8-2x}{2x-1}>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-2x>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-2x< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 4\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>4\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x< 4\\x\in\varnothing\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x< 4\)

3 tháng 10 2021

Bạn ghi lại câu b cho mình đc ko, câu b bị mất 1 đoạn ở dưới rồi