Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
a,ta có : x^3+y^3-xy(x+y)=(x+y)(x^2+y^2-xy) -xy(x+y)=(x+y)(x^2+y^2-2xy=(x+y)(x-y)^2
(đpcm)
b)x^3-y^3+xy(x-y)=(x-y)(x^2+y^2+xy)+xy(x-y)=(x-y)(x^2+y^2+2xy)=(x-y)(x+y)^2 (đpcm)
h) Sửa lại đề bài chút xíu:
$(xy+ab)^2+(ay-bx)^2=x^2y^2+a^2b^2+2abxy+a^2y^2-2aybx+b^2x^2$
$=x^2y^2+a^2b^2+a^2y^2+b^2x^2$
$=(x^2y^2+b^2x^2)+(a^2b^2+a^2y^2)$
$=x^2(y^2+b^2)+a^2(b^2+y^2)=(a^2+x^2)(b^2+y^2)$
j)
$ab(x^2+y^2)+xy(a^2+b^2)=abx^2+aby^2+xya^2+xyb^2$
$=(abx^2+xya^2)+(aby^2+xyb^2)$
$=ax(bx+ay)+by(ay+bx)=(ax+by)(ay+bx)$
k)
$(xy-ab)^2+(bx+ay)^2=x^2y^2-2xyab+a^2b^2+b^2x^2+2bxay+a^2y^2$
$=x^2y^2+a^2b^2+b^2x^2+a^2y^2$
$=(x^2y^2+b^2x^2)+(a^2b^2+a^2y^2)=x^2(y^2+b^2)+a^2(b^2+y^2)$
$=(a^2+x^2)(b^2+y^2)$
e)
$x^2-(2a+b)xy+2aby^2=x^2-2axy-bxy+2aby^2$
$=x(x-2ay)-by(x-2ay)=(x-by)(x-2ay)$
g)
$y^2-(3a+2b)xy+6abx^2=(y^2-2bxy)-(3axy-6abx^2)$
$=y(y-2bx)-3ax(y-2bx)=(y-3ax)(y-2bx)$
f)
$3xy(a^2+b^2)-ab(x^2+9y^2)=3xya^2+3xyb^2-abx^2-9aby^2$
$=(3xya^2-abx^2)-(9aby^2-3xyb^2)$
$=ax(3ay-bx)-3by(3ay-bx)=(3ay-bx)(ax-3by)$
\(a,ĐK:x\ne-3;x\ne0;y\ne0\\ b,A=\dfrac{1}{x^2\left(x+3\right)+y^2\left(x+3\right)}=\dfrac{1}{\left(x^2+y^2\right)\left(x+3\right)}\\ x=y=0\Leftrightarrow A\in\varnothing\)