K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để d1//d2 thì k+3=2-k

=>2k=-1

=>k=-1/2

b: Để d1 cắt d2 thì k+3<>2-k

=>k<>-1/2

c: để d1 trùg d2 thì k+3=2-k và -2=1(loại)

d: Để d1 đồng biến thì k+3>0

=>k>-3

e: Để d2 đồng biến thì 2-k>0

=>k<2

a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)

c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6

hay m<>3

 

1 tháng 12 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}2-m>0\\m-4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m>4\end{matrix}\right.\Leftrightarrow m\in\varnothing\\ b,\Leftrightarrow2-m=m-4\Leftrightarrow m=3\\ c,\Leftrightarrow2-m\ne m-4\Leftrightarrow m\ne3\)

a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)

c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6

hay m<>3

 

NV
30 tháng 7 2021

a.

Hàm là hàm số bậc nhất khi:

\(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)

b.

Hàm đồng biến trên R khi:

\(2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)

a) Để hàm số là hàm số bậc nhất thì \(2m-1\ne0\)

hay \(m\ne\dfrac{1}{2}\)

b) Để hàm số đồng biến thì 2m-1>0

hay \(m>\dfrac{1}{2}\)

8 tháng 8 2023

\(a,dkxd:x\ge0,x\ne4\)

\(b,B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\sqrt{x^2}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(c,x=16\left(tm\right)\Rightarrow B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{4+2}{4\left(4-2\right)}=\dfrac{6}{8}=\dfrac{3}{4}\)

\(d,B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Leftrightarrow\sqrt{x}+2>0\Leftrightarrow\sqrt{x}>-2\left(ktm\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

Kết hợp với \(dk:x\ge0\) ta kết luận \(0\le x< 4\) thì \(B>0\).

8 tháng 8 2023

a) Điều kiện xác định:

\(\left\{{}\begin{matrix}x-2\sqrt{x}\ne0\\x\ge0\end{matrix}\right.\)\(\Leftrightarrow x>0,x\ne4\)

Vậy...

b) \(B=\dfrac{\sqrt{x}.\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)^2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

Vậy \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

c) Tại x=16 ( thỏa mãn đk) thay vào B đã rút gọn ta được:

\(B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{3}{4}\)

d) \(B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)

\(\Leftrightarrow\sqrt{x}-2>0\)\(\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)

Vậy x>4 thì B>0

22 tháng 7 2018

Xác định j z: bn ?

a: Để phương trình có nghiệm thì (-2)^2-4(m-3)>=0

=>4-4m+12>=0

=>-4m+16>=0

=>-4m>=-16

=>m<=4

b: x1-x2=4

x1+x2=2

=>x1=3; x2=-1

x1*x2=m-3

=>m-3=-3

=>m=0(nhận)