Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức 3 có dạng : \(f\left(x\right)=ax^3+bx^2+cx+d\)
Theo bài ra ta có hệ phương trình :
\(\hept{\begin{cases}f\left(1\right)=a+b+c+d=6\\f\left(2\right)=8a+4b+2c+d=6\\f\left(3\right)=27a+9b+3a+d=6;f\left(-1\right)=-a+-c+d=-18\end{cases}}\) ( Vì cái này phải chia ra làm 4 nhưng không có nên mình phải viết lên trên dòng 3 cái f(-1) bạn phải cho xuống dòng 4 nha )
giải hệ pt ta đc :
\(\hept{\begin{cases}a=1\\b=-6\\c=11;d=0\end{cases}}\)
Vậy đa thức bậc 3 là : \(f\left(x\right)=x^3-6x^2+11x\)
Gọi đa thức cần tìm là f(x)
Do f(x) chia cho (x-1), (x-2), (x-3) đều có dư là 6
nên f(x) = a(x - 1)(x - 2)(x - 3) + 6
Mà f(-1) = -18
nên a(-1 - 1)(-1 - 2)(-1 - 3) + 6 = -18
<=> -24a = -24 <=> a = 1
Vậy đa thức cần tìm là
f(x) = (x - 1)(x - 2)(x - 3) + 6
Ta có: P(x) -6 chia hết cho 3 nhị thức x-1;x-2;x-3 nên x=1;x=2;x=3 là nghiệm của P(x)-6.
Vì P(x)-6 cũng bậc 3 như P(x) nên ta phải có biểu diễn:
P(x)-6=a(x-1)(x-2)(x-3)
=> P(x)=a(x-1)(x-2)(x-3)+6
P(-1)= -18 nên -24a+6=-18 <=> a =1
Vậy P(x)=(x-1)(x-2)(x-3)+6 =x^3-6x^2+11x
Ta có: P(x) -6 chia hết cho 3 nhị thức x-1;x-2;x-3 nên x=1;x=2;x=3 là nghiệm của P(x)-6.
Vì P(x)-6 cũng bậc 3 như P(x) nên ta phải có biểu diễn:
P(x)-6=a(x-1)(x-2)(x-3)
=> P(x)=a(x-1)(x-2)(x-3)+6
P(-1)= -18 nên -24a+6=-18 <=> a =1
Vậy P(x)=(x-1)(x-2)(x-3)+6 =x^3-6x^2+11x
\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)
\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)
\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)
\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)
Đặt F(x) = ax3 + bx2 + cx + d ( a ≠ 0 )
F(x) chia ( x - 1 ) ; ( x - 2 ) ; ( x - 3 ) đều dư 6
=> F(x) - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )
<=> ax3 + bx2 + cx + d - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )
Đến đây ta áp dụng định lí Bézoute :
F(x) - 6 chia hết cho x - 1 <=> F(1) = 0
<=> a + b + c + d - 6 = 0
<=> a + b + c + d = 6 (1)
F(x) - 6 chia hết cho x - 2 <=> F(2) = 0
<=> 8a + 4b + 2c + d - 6 = 0
<=> 8a + 4b + 2c + d = 6 (2)
F(x) - 6 chia hết cho x - 3 <=> F(3) = 0
<=> 27a + 9b + 3c + d - 6 = 0
<=> 27a + 9b + 3c + d = 6 (3)
F(-1) = -18
<=> -a + b - c + d = -18 (4)
Từ (1), (2), (3), (4) => \(\hept{\begin{cases}a+b+c+d=8a+4b+2c+d=27a+9b+3c+d=6\\-a+b-c+d=-18\end{cases}}\)
< Để giải hệ này xài máy 580VN X, Menu -> 9 -> 1 -> 4 >
Giải hệ ta được a = 1 ; b = -6 ; c = 11 ; d = 0
=> F(x) = x3 - 6x2 + 11x