K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

19 tháng 12 2016

ldigh;df

NV
5 tháng 4 2021

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

5 tháng 4 2021

em cảm ơn ạ

5 tháng 8 2015

a) 3 x^2 - 6x - 1

= 3 ( x^2 - 2x - 1/3 )

= 3 ( x^2 - 2x + 1 - 4/3)

= 3 [ ( x- 1 )^2 - 4/3)

=3 ( x-  1 )^2 - 4 

Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4 

VẬy GTNN là 4 khi x- 1 = 0 => x = 1 

b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )

= ( x - 1 )( x+ 6 )( x+  2 )( x+ 3 )

= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )

Đặt x^2 + 5x = t ta có :

  = ( t- 6 )( t+ 6 )

=  t^2 - 36

Vì t^2 >=0 => t^2 -36 >= -36 

VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5 

Nhớ **** 

13 tháng 6 2017

x = 0 hoặc x = 5 

ủng hộ mk nha thanks

3 tháng 12 2017

Có sai đề ko

3 tháng 12 2017

ko

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

18 tháng 7 2017

\(D=-x^2-4x\)

\(=-\left(x^2+4x\right)\)

\(=-\left(x^2+2.x.2+2^2-4\right)\)

\(=-\left[\left(x+2\right)^2-4\right]\)

\(=-\left(x+2\right)^2+4\)

\(-\left(x+2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+2\right)^2+4\le4\forall x\)

\(\Rightarrow D\le4\forall Dx\)

Dấu ''=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Vậy \(MAX_D=4\) khi \(x=-2.\)

18 tháng 7 2017

Thank You !^^