Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+4x+6}=0\)
\(\Leftrightarrow x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2=-2\)( vô nghiệm )
Vậy \(x\in\varnothing\)
theo mk thì chỗ bình phương 2 vế của bạn chỉ cần bằng luôn 4x+4 chứ k cần giá trị tuyệt đối, còn ở fong cuối bạn nên thêm (TMĐK) vào sau kết quả
nên bỏ ý 4 vì ngay ở ĐKXĐ đã có nên có thể bỏ ý đó đi
Bài 1. ĐKXĐ thêm x ≠ 1 nữa ạ
1) Với x = 9 tmđk, thay vào A ta được : \(A=\dfrac{2\sqrt{9}+1}{9^2}=\dfrac{7}{81}\)
2) \(B=\left[\dfrac{4x}{\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\cdot\dfrac{\sqrt{x}-1}{x^2}\)
\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}=\dfrac{4x-1}{x^2}\)
3) Để B < A thì \(\dfrac{4x-1}{x^2}< \dfrac{2\sqrt{x}+1}{x^2}\)
<=> \(\dfrac{4x-1}{x^2}-\dfrac{2\sqrt{x}+1}{x^2}< 0\)
<=> \(\dfrac{4x-2\sqrt{x}-2}{x^2}< 0\)
Vì x2 > 0 ∀ x
=> \(4x-2\sqrt{x}-2< 0\)
<=> \(2x-\sqrt{x}-1< 0\)
<=> \(\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)< 0\)
Vì \(2\sqrt{x}+1\ge1>0\forall x\ge0\)
=> \(\sqrt{x}-1< 0\)<=> x < 1
Vậy với x < 1 thì B < A
Câu 3 :
\(\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2x-4y+\dfrac{3}{2x+3y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2\left(x-2y\right)+\dfrac{3}{2x+3y}=3\end{matrix}\right.\)
Đặt \(x-2y=t;\dfrac{1}{2x+3y}=z\)
Hệ phương trình tương đương
\(\left\{{}\begin{matrix}t+z=2\\2t+3z=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=2-z\left(1\right)\\2t+3z=3\left(2\right)\end{matrix}\right.\)
Thế (1) vào (2) ta được : \(2\left(2-z\right)+3z=3\Leftrightarrow4-2z+3z=3\Leftrightarrow z=-1\)
\(\Rightarrow t=2-z=3\)
hay \(\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\left(3\right)\\\dfrac{1}{2x+3y}=-1\left(4\right)\end{matrix}\right.\)
Thế (3) vào (4) ta được : \(\dfrac{1}{2\left(3+2y\right)+3y}=-1\Leftrightarrow\dfrac{1}{6+7y}=-1\Rightarrow-6-7y=1\Leftrightarrow-7y=7\Leftrightarrow y=-1\)
\(\Rightarrow x=3-2=1\)
Vậy \(\left(x;y\right)=\left(1;-1\right)\)
a) \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
b) \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1-\sqrt{5}+1\)
\(=2\)
c) \(4x-4x-\sqrt{x^2-4x+4}\)
\(=-\sqrt{\left(x-2\right)^2}\)
\(=-\left|x-2\right|\)
\(=-x+2\)
\(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|=\sqrt{5}+1-\sqrt{5}+1=2\)
\(1)\) Ta có :
\(M=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
\(M=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(M=\left|x+1\right|+\left|x-1\right|\)
\(M=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(1-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x+1\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1\end{cases}\Leftrightarrow}-1\le x\le1}\)
Trường hợp 2 :
\(\hept{\begin{cases}x+1\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge1\end{cases}}}\) ( loại )
Vậy GTNN của \(M\) là \(2\) khi \(-1\le x\le1\)
Chúc bạn học tốt ~
b,ta co x^2+y^2=1
=>x^2=1-y^2
y^2=1-x^2
ta co
\(\sqrt{x^4+4\left(1-x^2\right)}\)+\(\sqrt{y^4+4\left(1-y^2\right)}\)
=\(\sqrt{\left(x^2-2\right)^2}\)+\(\sqrt{\left(y^2-2\right)^2}\)
còn lại bạn xét các trường hợp của x^2-2 và y^2-2 là ra
Bấm máy tính là ra mà :v
Mode ⬇ 1 1 3
X∈R
nó ra 'all real numbers' là sao vậy ạ??