Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left|2x-3\right|-\dfrac{1}{3}=0\Leftrightarrow\left|2x-3\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=\dfrac{1}{3}\\2x-3=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
b, tương tự
c, \(\left|2x-1\right|-\left|x+\dfrac{1}{3}\right|=0\Leftrightarrow\left|2x-1\right|=\left|x+\dfrac{1}{3}\right|\)
TH1 : \(2x-1=x+\dfrac{1}{3}\Leftrightarrow x=\dfrac{4}{3}\)
TH2 : \(2x-1=-x-\dfrac{1}{3}\Leftrightarrow3x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{2}{9}\)
d, \(3x-\left|x+15\right|=\dfrac{5}{4}\Leftrightarrow\left|x+15\right|=3x-\dfrac{5}{4}\)ĐK : x >= 5/12
TH1 : \(x+15=3x-\dfrac{5}{4}\Leftrightarrow-2x=-\dfrac{65}{4}\Leftrightarrow x=\dfrac{65}{8}\)( tm )
TH2 : \(x+15=\dfrac{5}{3}-3x\Leftrightarrow4x=-\dfrac{40}{3}\Leftrightarrow x=-\dfrac{10}{3}\)
Bài 1:
a.
$|x+\frac{7}{4}|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)
b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$
$|2x+1|=\frac{11}{15}$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)
c.
$3x(x+\frac{2}{3})=0$
\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)
d.
$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$
$\Leftrightarrow x=\frac{2}{5}$
Nguyễn Quý Trung:
\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)
Bạn bớt 2 vế đi 1/3 thì \(x=\dfrac{2}{5}\)
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
\(a,3-x=x+1,8\)
\(\Rightarrow-x-x=1,8-3\)
\(\Rightarrow-2x=-1,2\)
\(\Rightarrow x=0,6\)
\(b,2x-5=7x+35\)
\(\Rightarrow2x-7x=35+5\)
\(\Rightarrow-5x=40\)
\(\Rightarrow x=-8\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(\Rightarrow2x+20=3x-18\)
\(\Rightarrow2x-3x=-18-20\)
\(\Rightarrow-x=-38\)
\(\Rightarrow x=38\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(\Rightarrow8x-3+1=1+6x+x\)
\(\Rightarrow8x-3=7x\)
\(\Rightarrow8x-7x=3\)
\(\Rightarrow x=3\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)
\(\Rightarrow-2x=\dfrac{10}{9}\)
\(\Rightarrow x=-\dfrac{5}{9}\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{16}{3}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(\Rightarrow x-4=5-x\)
\(\Rightarrow x+x=5+4\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
\(k,7x^2-11=6x^2-2\)
\(\Rightarrow7x^2-6x^2=-2+11\)
\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(m,5\left(x+3\cdot2^3\right)=10^2\)
\(\Rightarrow5\left(x+24\right)=100\)
\(\Rightarrow x+24=20\)
\(\Rightarrow x=-4\)
\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
#\(Urushi\text{☕}\)
\(a,\dfrac{-3}{4}x+1=\dfrac{5}{6}\\ \Rightarrow\dfrac{-3}{4}x=\dfrac{-1}{6}\\ \Rightarrow x=\dfrac{2}{9}\\ b,\left(2x-3\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=5\end{matrix}\right.\\ c,\dfrac{1}{2}-\left|x+1\right|=0,25\\ \Rightarrow\left|x+1\right|=0,25\\ \Rightarrow\left[{}\begin{matrix}x+1=0,25\\x+1=-0,25\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-0,75\\x=-1,25\end{matrix}\right.\)
a: =>-3/4x=-1/6
hay x=2/9
b: =>2x-3=0 hoặc x-5=0
hay x=3/2 hoặc x=5
c: =>|x+1|=1/4
\(\Leftrightarrow x+1\in\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
hay \(x\in\left\{-\dfrac{3}{4};-\dfrac{5}{4}\right\}\)
a) Bổ sung cho đầy đủ đề
b) (3x - 1)/4 = (2x - 5)/3
3(3x - 1) = 4(2x - 5)
9x - 3 = 8x - 20
9x - 8x = -20 + 3
x = -17
c) Điều kiện: x ≠ -1/3
3/(-2) = (x - 3)/(3x + 1)
3.(3x + 1) = -2(x - 3)
9x + 3 = -2x + 6
9x + 2x = 6 - 3
11x = 3
x = 3/11 (nhận)
Vậy x = 3/11
a/dễ --> tự lm
b/ \(\left(x-\dfrac{4}{7}\right)\left(1\dfrac{3}{5}+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\1\dfrac{3}{5}+2x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\2x=\dfrac{8}{5}\Rightarrow x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy...............
c/ \(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)
TH1: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{4}{7}\\x>-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{4}{7}\)
TH2: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x< -\dfrac{1}{2}\)
Vậy \(x>\dfrac{4}{7}\) hoặc \(x< -\dfrac{1}{2}\) thì thỏa mãn đề
d/ \(\left(2x-3\right):\left(x+1\dfrac{3}{4}\right)< 0\)
TH1: \(\left\{{}\begin{matrix}2x-3>0\\x+1\dfrac{3}{4}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1,5\\x< -\dfrac{7}{4}\end{matrix}\right.\)(vô lý)
TH2: \(\left\{{}\begin{matrix}2x-3< 0\\x+1\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1,5\\x>-\dfrac{7}{4}\end{matrix}\right.\)\(\Rightarrow-\dfrac{7}{4}< x< 1,5\)
Vậy...................
a. \(\dfrac{-5}{4}\) x4 . \(\dfrac{8}{15}\) x = \(\dfrac{-40}{60}\) x5 = \(\dfrac{-2}{3}\) x5
b. -2x\(\left(\dfrac{3}{4}x^2-x+\dfrac{1}{2}\right)\) = -\(\dfrac{-3}{2}\) x3 + 2x3 - x
c. \(x\left(x-\dfrac{1}{2}\right)\) - (x - 2)(x + 3)
= x2 - \(\dfrac{1}{2}\) x - x2 - 3x - 2x - 6
\(A=5-\left|2x-1\right|\le5\)
Dấu "=" xảy ra khi:
\(2x=1\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{1}{\left|x-1\right|+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra khi:
\(x=1\)
\(C=x+\dfrac{1}{2}-\left|x-\dfrac{2}{3}\right|\le\left|x+\dfrac{1}{2}-x-\dfrac{2}{3}\right|=\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(-\dfrac{1}{2}\le x\le\dfrac{2}{3}\)
Ta có: \(\left|2x-1\right|\le0\) với mọi x
\(\Rightarrow5-\left|2x-1\right|\le5-0\) với mọi x
\(\Leftrightarrow A\le5\)
\(\Rightarrow A_{max}=5\)
Dấu \("="\) xảy ra khi:
\(\left|2x-1\right|=0\\ 2x-1=0\\ 2x=1\\ x=1:2=0,5\)
Vậy A đạt giá trị lớn nhất khi \(x=0,5\)