Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A không xác định được => x-2=0 => x=2
Để A âm => x-2 âm (vì x2+3 luôn dương) => x-2<0 => x<2
Để A nguyên => x2+3 chia hết cho x-2 => x.(x-2)+2.(x-2)+4+3 = (x-2).(x+2)+7 chia hết cho x-2 => 7 chia hết cho x-2
Lập Bảng
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Điều kiện xác định: \(x\ne0\)
Vì \(|x|>0\Rightarrow C>0\)
Với \(x\le-2\Leftrightarrow C\le0\)
Với \(x>-2\Leftrightarrow C>0\)
Nếu \(-2< x< 1\Leftrightarrow0< C< 3\)
Nếu \(x=1\Leftrightarrow C=3\)
Nếu \(x=2\Leftrightarrow C=2\)
Vậy giá trị lớn nhất của C=3 khi x=1
C=\(\frac{x+2}{x}\)
C=\(\frac{x+2}{x}\)=Z
C =1
nha
A = \(\dfrac{22-3x}{4-x}\)
A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)
A = 3 + \(\dfrac{10}{4-x}\)
A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi
4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒ \(x\) = 3
Vậy Amin = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3
Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
Ta có \(A= \left|x-3\right|+\left|x+7\right|+\left|x+1\right|=\left(\left|x-3\right|+\left|x+7\right|\right)+\left|x+1\right|\)
\(=\left(\left|3-x\right|+\left|x+7\right|\right)+\left|x+1\right|\)
Ta thấy \(\left|3-x\right|+\left|x+7\right|\ge\left|3-x+x+7\right|=10\)
Dấu bằng xảy ra khi và chỉ khi \(\left(3-x\right).\left(x+7\right)\ge0\Leftrightarrow-7\le x\le3\)
Mà \(\left|x+1\right|\ge0\)nên \(A=\left|x-3\right|+\left|x+7\right|+\left|x+1\right|\ge0+4=4\)
Dấu bằng xảy ra khi và chỉ khi \(-7\le x\le3\)
Vậy GTNN của A là 4 khi và chỉ khi \(-7\le x\le3\)