Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(\frac{1996}{\left|x\right|+1997}\)có GTLN \(\Leftrightarrow\left|x\right|+1997\)có GTNN.
Mà \(\left|x\right|+1997\ne0\)
Ta thấy: \(\left|x\right|\ge0\forall x\in R\Rightarrow\left|x\right|+1997\ge1997\)
\(\Rightarrow\left|x\right|=0\)thì \(\left|x\right|+1997\)có GTNN là \(1997\)
\(\Rightarrow\)GTLN của \(\frac{1996}{\left|x\right|+1997}\)là \(\frac{1996}{1997}\)khi x=0
2.\(\frac{\left|x\right|+1996}{-1997}=\frac{-\left(\left|x\right|+1996\right)}{1997}\)
\(\Rightarrow\left|x\right|+1996\)phải có GTNN thì \(\frac{\left|x\right|+1996}{-1997}\)đạt GTLN
Mà \(\left|x\right|\ge0\forall x\in R\Rightarrow x=0\)thì \(\left|x\right|+1996\)có GTNN là \(1996\)
Vậy GTLN của \(\frac{\left|x\right|+1996}{-1997}\)là \(\frac{1996}{-1997}\)khi x=0
ta có |x|≥0 => |x| +1996 ≥ 1996
=> |x| +1996/-1997
=> A
Ta có: |x| ≥ 0 ;\(\forall\)x
=> |x| + 1996≥ 1996 ;
=> \(\dfrac{|x|+1996}{-1997}\) ≥ \(\dfrac{-1996}{1997}\) ;\(\forall\)x
=> A \(\ge\) \(\dfrac{-1996}{1997}\)
Dấu = xảy ra <=> |x| =0
<=> x=0
Vậy GTLN của A là \(\dfrac{-1996}{1997}\) tại x = 0
a: \(\left|x\right|+1996>=1996\)
\(\Leftrightarrow\dfrac{\left|x\right|+1996}{1997}\ge\dfrac{1996}{1997}\)
\(\Leftrightarrow A\le-\dfrac{1996}{1997}\)
Dấu '=' xảy ra khi x=0
b: \(\left|x\right|+1>=1\)
\(\Leftrightarrow\dfrac{1}{\left|x\right|+1}\le1\)
\(\Leftrightarrow B\ge-1\)
Dấu '=' xảy ra khi x=0
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Giá trị lớn nhất của A sẽ đạt khi mẫu của phần số A nhỏ nhất .
I x - 2017 I có giá trị nhỏ nhất khi x = 2017
Khi đó I x - 2017 I + 2 = 2
A = 4032 / 2 = 2016
Vậy để biểu thức A đạt giá trị lớn nhất thì x = 2017
GTLN A = 2016
ta có |x|≥0 => |x| +1996 ≥ 1996
=> |x| +1996/-1997 ≤ 1996/-1997
=> A ≤1996/-1997
=> GTLN A = 1996/-1997
dấu "=" xảy ra <=> x=0
vậy GTLN A =1996/-1997 <=> x=0