Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
a) Ta có: \(-\left|x\right|\le0\)
\(-\left(y+4\right)^4\le0\)
\(\Rightarrow-\left|x\right|-\left(y+4\right)^4\le0\)
\(\Rightarrow A=10-\left|x\right|-\left(y+4\right)^4\le10\)
Vậy \(MAX_A=10\) khi \(x=0;y=-4\)
b) Hình như sai đề thì phải
a,,A=|x-3|+1
Ta thấy:\(\left|x-3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+1\ge0+1=1\)
\(\Rightarrow A\ge1\).Dấu = khi x=3
Vậy....
b)B=|6-2x|-5
Ta thấy:\(\left|6-2x\right|\ge0\)
\(\Rightarrow\left|6-2x\right|-5\ge0-5=-5\)
\(\Rightarrow B\ge-5\).Dấu = khi x=3
Vậy...
c) C=3-|x+1|
Ta thấy:\(-\left|x+1\right|\le0\)
\(\Rightarrow3-\left|x+1\right|\le3-0=3\)
\(\Rightarrow C\le3\).Dấu = khi x=-1
e) E= -(x+1)^2 -|2-y|+11
Ta thấy:\(\hept{\begin{cases}-\left(x+1\right)^2\\-\left|2-y\right|\end{cases}\le}0\)
\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)
\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|+11\le0+11=11\)
\(\Rightarrow E\le11\).Dấu = khi x=-1 y=2
Vậy...
f)F= (x-1)^2+|2y+2|-3
Ta thấy:\(\hept{\begin{cases}\left(x-1\right)^2\\\left|2y+2\right|\end{cases}}\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge0-3=-3\)
\(\Rightarrow F\ge-3\).Dấu = khi x=1 y=-1
Vậy...
\(a,A=4+\left|x-\frac{2}{5}\right|\)
Có \(\left|x-\frac{2}{5}\right|\ge0\)
\(\Rightarrow A\ge4+0=4\)
Dấu "=" xảy ra khi \(x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)
Vậy Min A = 4 \(\Leftrightarrow x=\frac{2}{5}\)
Bài này là GTNN nhé :
Ta có : \(\left|6-2x\right|\ge0\forall x\)
\(\Rightarrow\left|6-2x\right|-5\ge-5\forall x\)
Hay : \(B\ge-5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|6-2x\right|=0\)
\(\Leftrightarrow x=3\)
Vậy : min \(B=-5\) tại \(x=3\)