Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(B1,a,A=x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2\)
\(=\left(x-3\right)^2+2\ge2\)
Dấu "=" <=> x=3
Vậy ..........
\(b,B=x^2-20x+101\)
\(=\left(x^2-20x+100\right)+1\)
\(=\left(x-10\right)^2+1\ge1\)
Dấu "=" <=> x = 10
Vậy .
\(2,a,A=4x-x^2+3\)
\(=7-\left(x^2-4x+4\right)\)'
\(=7-\left(x-2\right)^2\le7\)
Dấu ''='' <=> x = 2
Vậy .
\(b,B=-x^2+6x-11\)
\(=-2-\left(x^2-6x+9\right)\)
\(=-2-\left(x-3\right)^2\le-2\)
Dấu ""=" <=> x = 3
Vậy..
Ta có : A = x2 + 8x + 16 - 16
=> A = (x2 + 8x + 16) - 16
=> A = (x + 4)2 - 16
Vì (x + 4)2 \(\ge0\forall x\)
Nên : A = (x + 4)2 - 16 \(\ge-16\forall x\)
Vậy Amin = -16 khi x = -4
\(A=x^2+8x\)
\(=x^2+2.x.4+16-16\)
\(=\left(x+4\right)^2-16\)
\(\Rightarrow A\ge-16\forall x\)
Dấu ''='' xảy ra khi và chỉ khi: x + 4 = 0<=> x=-4
Vậy giá trị nhỏ nhất của A là -16 khi x =- 4
b, \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\frac{15}{2}\right)\)
\(=-2\left(x^2-2.x.2+4+\frac{7}{2}\right)\)
\(=-\left(x-2\right)^2-7\)
\(\Rightarrow B\le-7\forall x\)
Dấu ''='' xảy ra khi và chỉ khi: x - 2 = 0 <=> x =2
Vậy giá trị lớn nhất của B là -7 khi x =2.
bai 1
A=x2-6x+11
=x2-2.3x+9+2
=(x2-6x+9)+2
=(x-3)2 +2
do (x-3)2 ≥0 ∀x
=>(x-3)2+2≥2
=>A≥2
=>GTNN A=2 khi
x-3=0
=>x=3
A= x^3-3x^2+3x5
=x2(3x3+x-3)
Để giá trị của A nhỏ nhất
=>x=2.Thay x=2 vào ta đc:
A=22(3*23+2-3)=4(3*8+2-3)
=4(24+2-3)=4*23=92
B=x^3 + 6x^2+12x-1
=x3+6x2+12x+8-9
=(x+2)3-9
Để giá trị của B nhỏ nhất
=>x=-1.Thay x=-1 vào ta được:
B=[(-1)+2]3-9=[1]3-9=-8
1a) Ta có: -2x2 + 4x - 18 = -2(x2 - 2x + 1) - 16 = -2(x - 1)2 - 16
Ta luôn có: (x - 1)2 \(\ge\)0 \(\forall\)x --> -2(x - 1)2 \(\le\)0 \(\forall\)x
=> -2(x - 1)2 - 16 \(\le\)-16 \(\forall\)x
Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1
Vậy Max của -2x2 + 4x - 18 = -16 tại x = 1
b) Ta có: -2x2 -12x + 12 = -2(x2 + 6x + 9) + 30 = -2(x + 3)2 + 30
Ta luôn có: -2(x + 3)2 \(\le\)0 \(\forall\)x
=> -2(x + 3)2 + 30 \(\le\)30 \(\forall\)x
Dấu "=" xảy ra khi: x + 3 = 0 <=> x = -3
Vậy Max của -2x2 - 12x + 12 = 30 tại x = -3
3.
a)\(x^2+15x-25=x^2+15x+56,25-81,25\)
\(=\left(x+7,5\right)^2-81,25\ge-81,25\forall x\)
Dấu "=" xảy ra<=>\(\left(x+7,5\right)^2=0\Leftrightarrow x=-7,5\)
Vậy.....
b) \(3x^2-6x-21=3\left(x^2-2x-7\right)\)
\(=3\left[\left(x-1\right)^2-8\right]=3\left(x-1\right)^2-24\ge-24\forall x\)
Dấu "=" xảy ra<=>\(3\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy.....
c)\(x^2-6x+y^2+2y+36=x^2-6x+9+y^2+2y+1+26\)
\(=\left(x-3\right)^2+\left(y+1\right)^2+26\ge26\forall x;y\)
Dấu '=" xảy ra<=> \(\left(x-3\right)^2=0\Leftrightarrow x=3\) và \(\left(y+1\right)^2=0\Leftrightarrow y=-1\)
Vậy......
\(a,x^2-2x+9\\ =\left(x-1\right)^2+8\ge8\)
Để \(\left(x-1\right)^2+8=8\) thì
\(\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)
Vậy...
\(b,x^2-3x+1=\left(x-\dfrac{3}{2}\right)^2-1.25\ge-1,25\)
Để \(\left(x-\dfrac{3}{2}\right)^2-1,25=-1,25\) thì:
............
=>\(x=\dfrac{3}{2}\)
Các câu sau tương tự
1. Câu hỏi của Quỳnh Như - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu 1 tại link này.
Bài 5:
a/A = x2 - 6x + 10 = x2 - 6x + 9 + 1 = ( x - 3 )2 +1
Vì ( x - 3 )2 \(\ge\)0 nên ( x - 3 )2 + 1 \(\ge\)1
Giá trị nhỏ nhất của A là 1
b/ B = x ( x + 6 ) = x2 + 6x + 9 - 9 = ( x + 3 )2 - 9
Vì ( x + 3 )\(\ge\)0 nên ( x + 3 ) - 9\(\ge\)- 9
Giá trị nhỏ nhất của B là - 9
5 - A\(=x^2-6x+10\)
A\(=x^2-3x-3x+9+1\)
A\(=x\left(x-3\right)-3\left(x-3\right)+1\)
A\(=\left(x-3\right)\left(x-3\right)+1\)
A\(=\left(x-3\right)^2+1\)
Vì \(^{\left(x-3\right)^2\ge0\forall x}\)
\(\rightarrow\left(x-3\right)^2+1\ge1\forall x\)
Hay A\(\ge1\forall x\)
Dấu '' = '' xảy ra\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
B\(=x\left(x+6\right)\)
B\(=x^2+6x\)
B\(=x\left(x+3\right)+3\left(x+3\right)-9\)
B\(=\left(x+3\right)\left(x+3\right)-9\)
B\(=\left(x+3\right)^2-9\)
Vì\(\left(x+3\right)^2\ge0\forall x\)
\(\rightarrow\left(x+3\right)^2-9\ge-9\forall x\)
Hay B\(\ge-9\forall x\)
Dấu ''='' xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(A=3x-x^2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Vậy GTLN của A là \(\frac{9}{4}\)khi x = \(\frac{3}{2}\)
\(B=7-8x-x^2=-\left(x^2+8x+16\right)+23=-\left(x+4\right)^2+23\le23\)
Vậy GTLN của B là 23 khi x = -4
\(C=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
Vậy GTNN của C là 1 khi x = 10
\(D=3x^2-6x+11=3\left(x^2-2x+1\right)+8=3\left(x-1\right)^2+8\ge8\)
Vậy GTNN của D là 8 khi x = 1
\(a,A=3x-x^2=-x^2+3x=-x^2+2.\frac{3}{2}x-\frac{9}{4}+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Vậy Max A = 9/4 <=> x = 3/2
\(b,B=7-8x-x^2=-x^2-8x+7=-x^2-2.4x-16+23=-\left(x+4\right)^2+23\ge23\)
Vậy MinB = 23 <=> x = -4
\(c,C=x^2-20x+101=x^2-2.10x+10^2+1=\left(x-10\right)^2+1\ge1\)
Vậy MinC = 1 <=> x = 10
\(d,D=3x^2-6x+11\)
\(D=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2+8=\left(\sqrt{3}x-\sqrt{3}\right)^2+8\ge8\)
Vậy MinD = 8<=> x=1