Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
e/ Tử số đến đâu và mẫu số đến đâu bạn?
f/ Căn đến đâu bạn?
g/ Căn đến đâu bạn?
h/ \(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)
\(=1-\frac{1}{2}\left(2sinx.cosx\right)^2=1-\frac{1}{2}sin^22x\)
Do \(0\le sin^22x\le1\Rightarrow\frac{1}{2}\le y\le1\)
\(y_{max}=1\) khi \(sin^22x=0\)
\(y_{min}=\frac{1}{2}\) khi \(sin^22x=1\)
t/ \(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(y=1-3sin^2x.cos^2x=1-\frac{3}{4}\left(2sinx.cosx\right)^2\)
\(y=1-\frac{3}{4}sin^22x\)
Tượng tự câu trên \(\Rightarrow\frac{1}{4}\le y\le1\)
\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)
\(y_{max}=1\) khi \(sin^22x=0\)
Tốt nhất là bạn sử dụng công cụ gõ công thức
Bạn chú ý gõ đề bằng công thức toán (hộp biểu tượng $\sum$) trên thanh công cụ. Nhìn đề rối mắt thế này thật tình không ai muốn đọc chứ đừng nói đến giúp =)))
e/
Đề câu này chắc chắn đúng chứ bạn?
f/
\(sin^4x+cos^4x=\frac{3}{4}\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\frac{3}{4}\)
\(\Leftrightarrow1-\frac{1}{2}\left(2sinx.cosx\right)^2=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{1}{2}sin^22x=0\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
c/
\(y=sin\left(4x-\frac{\pi}{3}\right)+sin\left(\frac{\pi}{3}\right)+5\)
\(=sin\left(4x-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}+5\)
Do \(-1\le sin\left(4x-\frac{\pi}{3}\right)\le1\)
\(\Rightarrow4+\frac{\sqrt{3}}{2}\le y\le6+\frac{\sqrt{3}}{2}\)
d/
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin2x+5\)
\(y=6-3sin^2x.cos^2x+3sin2x\)
\(y=-\frac{3}{4}sin^22x+3sin2x+6\)
\(y=\frac{3}{4}\left(sin2x+1\right)\left(5-sin2x\right)+\frac{9}{4}\ge\frac{9}{4}\)
\(y_{min}=\frac{9}{4}\) khi \(sin2x=-1\)
\(y=\frac{3}{4}\left(sin2x-1\right)\left(3-sin2x\right)+\frac{33}{4}\le\frac{33}{4}\)
\(y_{max}=\frac{33}{4}\) khi \(sin2x=1\)
b: \(y=\dfrac{1}{2}\sin4x-1\)
\(-1< =\sin4x< =1\)
\(\Leftrightarrow-\dfrac{1}{2}< =\dfrac{1}{2}\cdot\sin4x< =\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{3}{2}< =\dfrac{1}{2}\cdot\sin4x-1< =-\dfrac{1}{2}\)
Do đó: \(y_{max}=\dfrac{-1}{2}\) khi \(4x=\dfrac{\Pi}{2}+k\Pi\)
hay \(x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\)
\(y_{min}=\dfrac{-3}{2}\) khi \(4x=-\dfrac{\Pi}{2}+k\Pi\)
hay \(x=-\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\)
g: \(0>=-2\left|\cos x\right|>=-2\)
\(\Leftrightarrow5>=-2\left|\cos x\right|+5>=3\)
Do đó: \(y_{max}=5\) khi \(\)\(\cos x=0\)
hay \(x=\dfrac{\Pi}{2}+k\Pi\)
\(y_{min}=3\) khi \(\cos x=-1\)
hay \(x=-\Pi+k2\Pi\)